Площадь треугольника равна 1/*a*b*sinA. Поскольку треугольник равносторонний, то а=b, а sinA=sin60=V3/2. Записываем площадь 1/2*a^2*V3/2=3*V3 (^2 читай "в квадрате", V - читай "корень квадратный"). Получаем a^2=12 => a=V12=2V3. В равностороннем треугольнике медианы, высоты и биссектрисы совпадают и делятся в отношении 1:3. Точка их пересечения будет центром описанной вокруг треугольника окружности. Следовательно R окружности равен 1/3 высоты треугольника. Найдем высоту. S=1/2a*h=3*V3 => 1/2*2V3*h=3*V3 => h=3 R=2/3y=2
Записываем площадь 1/2*a^2*V3/2=3*V3 (^2 читай "в квадрате", V - читай "корень квадратный").
Получаем a^2=12 => a=V12=2V3.
В равностороннем треугольнике медианы, высоты и биссектрисы совпадают и делятся в отношении 1:3. Точка их пересечения будет центром описанной вокруг треугольника окружности. Следовательно R окружности равен 1/3 высоты треугольника.
Найдем высоту. S=1/2a*h=3*V3 => 1/2*2V3*h=3*V3 => h=3
R=2/3y=2
Пусть х первое число, у- второе число, то х+у=80, 0,5х+0,25у=26.По условию задачи составим систему уравнение:
х+у=80 х=80-у х=80-у х=80-у
0,5х+0,25у=26 0,5(80-у)+0,25у=26 40-0,5у+0,25у=26 -0,25у=-14
х=80-у х=80-56 х=24 -первое число
у=56 у=56 у=56 -второе число
проверка:
24+56=80 0,5*24+0,25*56=26
80=80 12+14=26
26=26
ответ: первое число 24, второе 56