Укажите соответствующий вывод для каждого неравенства.
Обоснуйте свой ответ
a) x^2 - 4x + 1 <_ 0
b) 2x^2 - x + 4 > 0
c) -x^2 + 3x - 8 >_ 0
d) -x^2 + 16 >_ 0
1. Неравенство не имеет решений.
2.Решением неравенства является вся числовая прямая.
3. Решением неравенства является одна точка.
4. Решением неравенства является закрытый промежуток.
5. Решением неравенства является открытый промежуток.
6. Решением неравенства является объединение двух промежутков.
ответ: а=7 см, b= 4 см.
Объяснение:
"периметр прямоугольника равен 22 см. Если одну из его сторон уменьшить на 1 см, а вторую увеличить на 2 см, то достанем прямоугольник, площадь которого на 8 см2 больше чем площадь начального прямоугольника. Найдите стороны исходного прямоугольника"
***
Р =2(a+b), где а и b - размеры первоначального прямоугольника.
(а-1) см, (b+2) - размеры нового прямоугольника.
S1=ab см² - площадь первоначального прямоугольника;
S2=(a-1)(b+2) - площадь нового прямоугольника.
S2-S1=8 см².
(a-1)(b+2) - ab=8;
2(a+b)=22;
Это система уравнений. Решаем её:
ab+2a-b-2-ab=8;
2a-b=10;
a+b=11;
a=11-b;
2(11-b)-b=10;
22-2b-b=10;
-3b=-12;
b=4 см;
a=11-b=11-4=7 см.
Проверим:
периметр Р=2(4+7)=2*11=22 см. Всё верно!
Объяснение:
Надо найти или вывести формулу, связывающую то, что нужно найти( ctgα) и то, что дается( sinα)/
так как ctgα=cosα/sinα), то нам достаточно найти cosα из основного тригонометрического тождества и подставить в формулу ctgα=cosα/sin):
cos²α+sin²α=1 - основное тригонометрическое тождество
Отсюда, cos²α=1-sin²α
cos²α=1-(-8/19)²=1-64/361= 297/361 = 9*33/361;
cos²α=9*33/361⇒cosα=±√9*33/361=±3√33/19 так как α∈[3π/2;2π], тоcosα в этой четверти положительный.Тогда cosα=3√33/19
Теперь найдем√33ctgα=√33* (3√33/19)/-8/19=-33*3/8=-99/8=-12,375
ответ:-12,375