Укажите верные утверждения.
Дана функция y = x2.
У точек с положительными абсциссами ординаты отрицательны.
Если значение аргумента увеличить в 2 раза, то значение функции увеличится в 4 раза.
Если значение аргумента увеличить в 2 раза, то значение функции также увеличится в 2 раза.
Если знак значения аргумента поменять на противоположный, то значение функции не изменится.
Если знак значения аргумента поменять на противоположный, то поменяется и знак значения функции.
У точек с положительными абсциссами ординаты могут быть как положительными, так и отрицательными.
Если значение аргумента увеличить в 2 раза, то значение функции не изменится.
У точек с положительными абсциссами ординаты тоже положительны.
1. x² - 6x + 9 = 0
D = 0
x = -b/2a = 6/2 = 3
Відповідь: в) 1
2. x² - 7x = -6
x² - 7x + 6 = 0
D = b² - 4ac = 49 - 24 = 25
√D = √25 = 5
x₁ = (-b + √D)/2a = (7 + 5)/2 = 12/2 = 6
x₂ = (-b - √D)/2a = (7 - 5)/2 = 2/2 = 1
x₁ + x₂ = 6 + 1 = 7
Відповідь: а) 7
3. x² - 7x + 6 = 0
x² - 7x + 6 = 0
D = b² - 4ac = 49 - 24 = 25
√D = √25 = 5
x₁ = (-b + √D)/2a = (7 + 5)/2 = 12/2 = 6
x₂ = (-b - √D)/2a = (7 - 5)/2 = 2/2 = 1
x₁ · x₂ = 6 · 1 = 6
Відповідь: г) 6
4. x² - 15x + 56 = 0
x² - 7x - 8x + 56 = 0
x(x - 7) - 8(x - 7) = 0
(x - 7)(x - 8) = 0
x - 7 = 0
x₁ = 7
x - 8 = 0
x₂ = 8
Відповідь: в) 7i 8
Если обе части уравнения неотрицательны, можно возвести в квадрат, новых корней при этом не возникнет. Заодно пользуемся тем, что |...|^2 = (...)^2:
(x^2 + 5x - 4)^2 = (3x - 1)^2
(x^2 + 5x - 4)^2 - (3x - 1)^2 = 0
Раскладываем по формуле разности квадратов:
(x^2 + 5x - 4 - 3x + 1)(x^2 + 5x - 4 + 3x - 1) = 0
(x^2 + 2x - 3)(x^2 + 8x - 5) = 0
У первой скобки корни -3, 1 (легко угадать, пользуясь теоремой Виета).
У второй скобки корни найдем, выделив полный квадрат:
x^2 + 8x - 5 = 0
x^2 + 8x + 16 = 16 + 5
(x + 4)^2 = 21
x = -4 +- sqrt(21)
Нужны корни, которые не меньше 1/3. У первой скобки это 1, у второй - точно не -4 - sqrt(21) < 0 и возможно -4 + sqrt(21).
Сравним -4 + sqrt(21) и 1/3. Обозначим неизвестный значок за v и попереписываем:
-4 + sqrt(21) v 1/3
sqrt(21) v 1/3 + 4
sqrt(21) v 13/3
3 sqrt(21) v 13
sqrt(183) v sqrt(169) - отсюда ясно, что v = '>', -4 + sqrt(21) > 1/3.
Получается, у уравнения есть два корня x = 1 и x = -4 + sqrt(21).
ответ. sqrt(21) - 3.
P.S. Можно было не сравнивать sqrt(21) - 4 и 1/3, а поступить иначе. Заметим, что график y = x^2 + 8x - 5 - квадратичная парабола, ветви направлены вверх, ось симметрии x = -4. Тогда если y(1/3) < 0, то больший корень будет больше 1/3.