В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
yuliyayulyafe
yuliyayulyafe
09.07.2020 03:24 •  Алгебра

Укажите значение а, при которых данная функция убывает на r и имеет критическую точку, а также те значения а при которых функция убывает на r и не имеет критических точек
y = (a+1)x^{3}+6x^{2} +2(a+1)x +1

Показать ответ
Ответ:
layci
layci
05.10.2020 14:46

Вообще, исходя из определений, критическая точка для функции одного переменного - это точка, в которой производная функции равна 0.

Далее, для пункта 1 нам нужно, чтобы исходная функция убывала на (-∞;+∞), для этого производная должна быть неположительной на этом же интервале и в одной точке должна быть равной нулю.

y'=3(a+1)x^2+12x+2(a+1)

График производной - парабола (за исключением одного случая), причем её направление зависит от выражения с параметром. Нам нужно, чтобы парабола в одной точке касалась оси ОХ, а вся остальная парабола находилась ниже оси ОХ. То есть, её ветви должны быть направлены вниз.

Но для начала рассмотрим тот случай, когда a=-1 и это не парабола.

y'=12x. Видно, что исходная функция будет и возрастать, и убывать, так что a=-1 не подходит нам.

Вернемся к параболе. Направление ветвей вниз - ограничение 3(a+1)

Условие, когда один корень -  D=0 в уравнении y'=0

3(a+1)x^2+12x+2(a+1)=0; D_1=6^2-3(a+1)*2(a+1)=0;\\ 36-6(a+1)^2=0; 6-(a+1)^2=0; (a+1)^2=6; a+1=+-\sqrt{6}

Тогда имеем два значения a: a_1=\sqrt{6}-1; a_2=-\sqrt{6}-1

Учитывая ограничение a<-1 (корень из 6 больше 2), берем только a2.

Теперь к пункту 2, когда критических точек нет. На самом деле, всю работу мы почти сделали. Ещё раз выпишем производную

y'=3(a+1)x^2+12x+2(a+1)

Теперь нам надо, чтобы даже касаний оси ОХ этой параболой не было.  Тогда получается необходимость отсутствия корней уравнения y'=0. Этот случай при D<0 (корней нет, а сама парабола находится ниже оси ОХ, главное будет потом учесть ограничение на направление ветвей вниз - a<-1)

Чтобы решить это неравенство, нужно исследовать D как функцию, найти её нули и методом интервалов решить неравенство. Но нули её мы как раз нашли. Это a_1=\sqrt{6}-1; a_2=-\sqrt{6}-1

D_1=6(6-(a+1)^2)

Методом интервалов получим левый крайний и правый крайний промежуток a∈(-oo;-\sqrt{6}-1)(\sqrt{6}-1;+oo)

Но теперь надо учесть ограничение a<-1. Тогда правый промежуток нам не подойдет.

a∈(-oo;-\sqrt{6}-1)

Как-то так. Если в задаче необходимо объединить решения пункта 1 и пункта 2, то ответ будет выглядеть так: a∈(-oo;-\sqrt{6}-1]

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота