2.Найдите наибольшее значение функции y=-x^2-6x+5 на промежутке [-4,-2]
y=-x^2-6x+5 y`=-2x-6 y`=0 при х=-3 - принадлежит [-4,-2] у(-4)=-(-4)^2-6*(-4)+5=13 у(-3)=-(-3)^2-6*(-3)+5=14 у(-2)=-(-2)^2-6*(-2)+5=13
наибольшее значение функции на промежутке [-4,-2] max(y)=14
3. y=корень(3) - горизонтальная прямая касательная к прямой в любой точке совпадает с прямой к оси абсцисс под углом 30 градусов касательная к прямой у=корень(3) быть не может
4. y=(x-1)^3-3(x-1) =(x-1)((x-1)^2-3)=(x-1-корень(3))*(x-1)*(x-1+корень(3)) кривая третей степени, симметричная относительно точки x=1; у=0 имеет локальный минимум и локальный максимум имеет три нуля функции имеет одну точку перегиба расчетов не привожу так как это уже 4 задание в вопросе
график во вложении
3*. - для измененнного условия y=корень(3x) y`=1/2*корень(3/x) y`=tg(pi/6)=корень(3)/3=1/2*корень(3/x)
1) 3x² = 0 ⇒ х = 0
2) 9x² = 81 ⇒ х² = 9 ⇒ х₁= -3 и х₂ = 3
3) x² - 27 = 0 ⇒ х² = 27 ⇒ х = ⁺₋ √27 ⇒ х = ⁺₋ 3√3
4) 0.01x² = 4 ⇒ х² = 400 ⇒ х₁= -20 и х₂ = 20
2. Решить уравнения
1) x² + 5x = 0
х(х + 5) = 0
х₁ = 0 или х₂ = -5
2) 4x² = 0.16x
4x² - 0.16x = 0
4х (х - 0,04) = 0
х₁ = 0 или х₂ = 0,04
3) 9x² + 1 = 0
9x² = - 1 - НЕТ решения (корень из отрицательного числа НЕ существует)
3. Решить уравнения
1) 4x² - 169 = 0
4x² = 169
х² =
х₁ = -6,5 или х₂ = 6,5
2) 25 - 16x² = 0
16х² = 25
х₁ = -1,25 или х₂ = 1,25
3) 2x² - 16 = 0
2х² = 16
х² = 8
х₁ = -2√2 или х₂ = 2√2
4) 3x² = 15
х² = 5
х₁ = -√5 или х₂ = √5
5) 2x² =
х² =
х₁ = -0,25 или х₂ = 0,25
6) 3x² =
3х² =
х² =
х₁ = -1 или х₂ = 1
s(t)=t^3+3t^2
v(t)=3t^2+6t
v(1)=3+6=9 м/с
a(t)=6t+6
a(1)=6+6=12 м/с2
2.Найдите наибольшее значение функции y=-x^2-6x+5 на промежутке [-4,-2]
y=-x^2-6x+5
y`=-2x-6
y`=0 при х=-3 - принадлежит [-4,-2]
у(-4)=-(-4)^2-6*(-4)+5=13
у(-3)=-(-3)^2-6*(-3)+5=14
у(-2)=-(-2)^2-6*(-2)+5=13
наибольшее значение функции на промежутке [-4,-2]
max(y)=14
3.
y=корень(3) - горизонтальная прямая
касательная к прямой в любой точке совпадает с прямой
к оси абсцисс под углом 30 градусов касательная к прямой у=корень(3) быть не может
4.
y=(x-1)^3-3(x-1) =(x-1)((x-1)^2-3)=(x-1-корень(3))*(x-1)*(x-1+корень(3))
кривая третей степени,
симметричная относительно точки x=1; у=0
имеет локальный минимум и локальный максимум
имеет три нуля функции
имеет одну точку перегиба
расчетов не привожу так как это уже 4 задание в вопросе
график во вложении
3*. - для измененнного условия
y=корень(3x)
y`=1/2*корень(3/x)
y`=tg(pi/6)=корень(3)/3=1/2*корень(3/x)
корень(х)=3/2
х=2,25 - это ответ