Упрости многочлен, записав каждый его член в стандартном виде 9,4ay7⋅(−6)ayz−7,46mt⋅13m7t . Выбери правильный ответ: другой ответ −56,4ay7ayz−96,98mtm7t −56,4a2y8z−96,98m8t2 9,4a2y8⋅(−6)z−7,46m8⋅13t2
Наши действия: 1) ищем производную 2) приравниваем её к нулю и решаем уравнение 3) выясняем, какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах промежутка. 4) из всех результатов ищем наибольший( наименьший) и пишем ответ. поехали? 1)f'(x) = 3x^2 -12 2)3x^2 -12 = 0 3x^2 = 12 x^2 = 4 x = +-2 3) из этих чисел в указанный промежуток [0;3] попал х = 2 f(2) = 2^3 -12*2 +7 = 8 -24 +7 = 15 -24 = -9 f(0) = 0^3 -12*0 +7 = 7 f(3) = 3^3 -12*3 +7= 27 -36 +7 = 34 - 36 = -2 4) ответ: max f(x) = f(0) = 7 minf(x) = f(2) = -9
5^(x-2) = 5^0 2^(x² -3x +8) = 2^6
x-2 = 0 x² -3x +8 = 6
x = 2 x² -3x +2 = 0
2) 3·4^x =48 x = 1 и х = 2
4^x = 16 6)7^(2x-8)·7^(x+7) = 0
4^x = 4² нет решений
x=2 7)(0,2)^x ≤ 25·5√5
3)3^x=27·3√9 5^-x ≤ 5²·5·5^1/2
3^x = 3³·3·3 5^-x ≤5^3,5
3^x = 3^5 -x ≤ 3,5
x = 5 x ≥ -3,5
4)3^x + 3^(x +1) = 4 8)(1/2)^-x + 2^(3 +x) ≤9
3^x(1 +3) = 4 2^x +2^(3 +x) ≤ 9
3^x·4 = 4 2^x(1 +2^3) ≤ 9 | :9
3^x = 1 2^x ≤ 1
x = 0 2^x ≤2^0
x≤ 0
2) приравниваем её к нулю и решаем уравнение
3) выясняем, какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах промежутка.
4) из всех результатов ищем наибольший( наименьший) и пишем ответ.
поехали?
1)f'(x) = 3x^2 -12
2)3x^2 -12 = 0
3x^2 = 12
x^2 = 4
x = +-2
3) из этих чисел в указанный промежуток [0;3] попал х = 2
f(2) = 2^3 -12*2 +7 = 8 -24 +7 = 15 -24 = -9
f(0) = 0^3 -12*0 +7 = 7
f(3) = 3^3 -12*3 +7= 27 -36 +7 = 34 - 36 = -2
4) ответ: max f(x) = f(0) = 7
minf(x) = f(2) = -9