По всей видимости, речь идёт о функции у=-5/(1+х^2)
Если это так, то обратим внимание на то, что знаменатель всегда положителен, поэтому значение функции всегда отрицательное.
Далее, вообще верхний предел этой функции равен 0, при х-> +-бесконечности, поэтому максимальное ЦЕЛОЕ значение, которое может принять функция, равно -1.
Вот в принципе и всё, однако для строгости нужно ещё доказать, что она где-то примет это значение. Это просто, так как мин. значение функции -5 , это очевидно, если глянуть на знаменатель. Поэтому область значений функции [-5;0). -1 входит в этот интервал. Всё.
Ну и последнее. В задаче НЕ ТРЕБУЕТСЯ определить при каком значении х достигается указанный максимум и в общем случае это бывает очень трудно, даже невозможно аналитическими методами сделать. У нас же очень простая функция, поэтому в качестве бонуса определим этот х.
-5/(1+х^2)=-1
x^2 = 4, x=+-2
То есть указанного целочисленного максимума функция принимает даже при двух разных значениях аргумента(хотя это было ясно с самого начала, так как функция чётная).
По всей видимости, речь идёт о функции у=-5/(1+х^2)
Если это так, то обратим внимание на то, что знаменатель всегда положителен, поэтому значение функции всегда отрицательное.
Далее, вообще верхний предел этой функции равен 0, при х-> +-бесконечности, поэтому максимальное ЦЕЛОЕ значение, которое может принять функция, равно -1.
Вот в принципе и всё, однако для строгости нужно ещё доказать, что она где-то примет это значение. Это просто, так как мин. значение функции -5 , это очевидно, если глянуть на знаменатель. Поэтому область значений функции [-5;0). -1 входит в этот интервал. Всё.
Ну и последнее. В задаче НЕ ТРЕБУЕТСЯ определить при каком значении х достигается указанный максимум и в общем случае это бывает очень трудно, даже невозможно аналитическими методами сделать. У нас же очень простая функция, поэтому в качестве бонуса определим этот х.
-5/(1+х^2)=-1
x^2 = 4, x=+-2
То есть указанного целочисленного максимума функция принимает даже при двух разных значениях аргумента(хотя это было ясно с самого начала, так как функция чётная).
Вот теперь точно всё.
3x+1 / x-3 < 3
Домножаем всё на общий знаменатель
3x+1 -3(x-3) / x-3 < 0
3x+1 -3x+9 / x-3 < 0
10 / x-3 < 0
Теперь методом интервалов решаем
Будет прямая с точкой 3, которая будет разбивать на 2 интервала.
В одном случае будет x < 3, в другом x > 3
З.Ы. х не может быть равен 3, т.к. знаменатель тогда обращается в нуль, что невозможно.
Теперь берём любые числа.
Начнём с x < 3
Пусть х = 0, тогда
10 / 0 - 3 = 10 / -3 = - 3 целых 1/3, что удовлетворяет x < 0.
Пусть х = 5, тогда
10 / 5 - 3 = 10 / 2 = 5, что не удовлетворяет x < 0, т.к. это x > 0
Следовательно, ответ:
x < 3.