Поскольку необходимо представить число 68 в виде суммы двух чисел, то пусть первое число х, тогда второе число (68-х). Тогда сумма квадратов слагаемых будет равна: х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя 1) с производной (2х²-136х+4624)'=4x-136 4x-136=0 4x=136 x=136:4 х=34 Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика y=2х²-136х+4624 Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы. х₀=-b/2a=-(-136)/4=34
На оси х лежат точки, ордината которых равна 0, поэтому в точке пересечения графиков М(х; 0). Найдем х, решив систему уравнений: Система: 7х-3у=-21 |*2 <=> 14x-6y=-42 2х-5у=m |*7 14x-35y =7m вычтем из верхнего уравнения нижнее, получим: 0+29y=-42-7m и т.к. у=0, то 42=-7m -6=m Проверка: Cистема: 7х-3у=-21 | * 2 <=> _14x-6y=-42 2х-5у=-6 | * 7 14x-35y=-42 0 +29y=0 y=0 => точка пересечения лежит на оси Х 14х-0=-42 14х=-42 х=-3 М(-3; 0)
Тогда сумма квадратов слагаемых будет равна:
х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя
1) с производной
(2х²-136х+4624)'=4x-136
4x-136=0
4x=136
x=136:4
х=34
Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика
y=2х²-136х+4624
Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы.
х₀=-b/2a=-(-136)/4=34
34+34=68
Система:
7х-3у=-21 |*2 <=> 14x-6y=-42
2х-5у=m |*7 14x-35y =7m вычтем из верхнего уравнения нижнее, получим: 0+29y=-42-7m и т.к. у=0, то
42=-7m
-6=m
Проверка:
Cистема:
7х-3у=-21 | * 2 <=> _14x-6y=-42
2х-5у=-6 | * 7 14x-35y=-42
0 +29y=0
y=0
=> точка пересечения лежит на оси Х
14х-0=-42
14х=-42
х=-3 М(-3; 0)