Сначала просто раскрываешь скобки:
6m+8 — из-за того, что перед скобкой ничего нет (или же можно считать, что там плюс стоит) знаки внутри не меняются
-3m+4 — из-за того, что перед скобкой минус все знаки внутри, скобки меняются
6m+8-3m+4
Находим подобные члены (с одинаковыми параметрами), у нас это 6m и -3m, а затем складываем числа 8 и 4
6m-3m+8+4=3m+12
3m делится на три, где остается 1m (1 не пишется), и 12 тоже делится на три и Остается 4. Значит можно вывести 3 за скобки
3(m+12)
Теперь это выражение можно разделить на 3. Кратное - это делимое, первое значение в делении
3 сверху и 3 снизу сокращаются и остается m-4. Значит это выражение является кратным трем
2) ( 3x + 3y) - bx - by = 3(x + y) - b(x + y) = (x+y)(3 - b)
3) (4n - 4) + ( c - nc) = 4( n - 1) + c( 1 - n) = (4 - c)(n - 1)
4) ( x⁷ + x³) - 4x⁴ - 4 = x³(x⁴ + 1) - 4( x⁴ + 1) = (x⁴+1)( x³ - 4)
5) (6mn - 3m) + ( 2n - 1) = 3m( 2n - 1) + ( 2n - 1)=(2n - 1)(3m + 1)
6) (4a⁴ - 8a) +(10y - 5ya³) = 4a(a³ - 2) + 5y(2 - a³) = (4a - 5y)(a³ - 2)
7) a²b² - a + ab² - 1 = (a²b² + ab²) - (a + 1) = ab²(a + 1) - (a+1)=(a+1)(ab² - 1)
8) (xa - xb²) + (zb² - za) - ya + yb² = x(a-b²)+z(b² -a) - y(a -b²)=(x - z - y)(a - b²)
Сначала просто раскрываешь скобки:
6m+8 — из-за того, что перед скобкой ничего нет (или же можно считать, что там плюс стоит) знаки внутри не меняются
-3m+4 — из-за того, что перед скобкой минус все знаки внутри, скобки меняются
6m+8-3m+4
Находим подобные члены (с одинаковыми параметрами), у нас это 6m и -3m, а затем складываем числа 8 и 4
6m-3m+8+4=3m+12
3m делится на три, где остается 1m (1 не пишется), и 12 тоже делится на три и Остается 4. Значит можно вывести 3 за скобки
3(m+12)
Теперь это выражение можно разделить на 3. Кратное - это делимое, первое значение в делении
3 сверху и 3 снизу сокращаются и остается m-4. Значит это выражение является кратным трем