Уравнениями с переменными хну g(1.3), y) выражения с переменными х и Любое уравнение с двумя переменными можно привести к 0. F(x.y) Степенью уравнения с переменными, представленного и где ade F(x:y) стандартного вида, называют степень F(x.y) Пример: 2r(3x+y) dr-l-yp-e3 степени, 4x+/=0. Значение суммы степеней переменных / =3. Общий уравнения с + - с- степени. Примеры нелинейных с переменными: Jo-
136/(х-2) - 130/х = 4
приводим к общему знаменателю х(х-2) и отбрасываем его, заметив, что х≠0 и х≠2, получаем:
136х-130(х-2)=4х(х-2)
136х-130х+260-4х2+8х=0
-4х2 +14х +260 =0 |:(-2)
2х2 -7х -130 =0
Д=19+8*130=1089
х(1)=(7+33) / 4 =10 (л/мин) воды пропускает через себя вторая труба.
х(2)= (7-33) / 4 = -6,5 <0 не подходит под условие задачи
Обозначим возраст отца за х, а возраст дочери за у, тогда согласно условию задачи
х-у=26 (первое уравнение)
Через 4 года возраст отца будет составлять х+4, а возраст дочери у+4
И так как возраст отца составит в 3 раза старше чем возраст дочери, уравнение будет следующим: (х+4)/(у+4)=3 (второе уравнение)
х-у=26
(х+4)/(у+4)=3
Решим данную систему уравнений. Из первого уравнения найдём х, х=26+у
Подставим данное х во второе уравнение
(26+у+4)/(у+4)=3
30+у=3*(у+4)
30+у=3у+12
3у-у=30-12
2у=18
у=9 (лет-возраст дочери)
х=9+26=35 (лет-возраст отца)
ответ: Возраст отца 35лет; возраст дочери 9лет