Запишем данные в таблицу, по строке выразим время движения каждого автобуса (расстояние разделить на скорость).
Время движения двухэтажного автобуса:
ч
Время движения микроавтобуса:
ч
Известно, что туристы, ехавшие на двухэтажном автобусе, добрались до города на полчаса позже, т.е. время движения у них было больше на 0,5 ч. Вычитаем из большего времени меньшее и получаем уравнение:
x > 0 по смыслу задачи, поэтому умножаем на знаменатель обе части уравнения.
Уравнение касательной для функции f(x) = e^x в точке x = x0 имеет вид y = (e^x0) * x + b { Общее уравнение касательной для функции f(x): y = mx+b, где m - slope factor,m = d/dx*f(x), в нашем случае m=d/dx*f(x) = (e^x)' = e^x } если прямая y=x+1 есть касательная к f(x), тогда m =1, b=1 т.к. формула касательной для нашей функции y = (e^x0) * x + b, то e^x0 = 1, b = 1, откуда x0 = 0, в точке x0 должна также совпасть координата y0 (значение функции f(x0) и точка касательной y(0)), действительно, f(0) = e^0 = 1, y(0) = e^0 * 0 + 1 = 1, совпадают, f(0) = y(0) = 1 таким образом прямая y=x+1 является касательной к y = e^x в точке с координатами (0,1)
70 км/ч
Объяснение:
Пусть х км/ч - скорость двухэтажного автобуса,
(х + 10) км/ч - скорость микроавтобуса.
Оба автобуса проехали по 280 км.
Запишем данные в таблицу, по строке выразим время движения каждого автобуса (расстояние разделить на скорость).
Время движения двухэтажного автобуса:
ч
Время движения микроавтобуса:
ч
Известно, что туристы, ехавшие на двухэтажном автобусе, добрались до города на полчаса позже, т.е. время движения у них было больше на 0,5 ч. Вычитаем из большего времени меньшее и получаем уравнение:
x > 0 по смыслу задачи, поэтому умножаем на знаменатель обе части уравнения.
По теореме, обратной теореме Виета,
- не подходит по смыслу задачи,
(км/ч) - скорость двухэтажного автобуса.
имеет вид y = (e^x0) * x + b
{
Общее уравнение касательной для функции f(x): y = mx+b,
где m - slope factor,m = d/dx*f(x),
в нашем случае m=d/dx*f(x) = (e^x)' = e^x
}
если прямая y=x+1 есть касательная к f(x), тогда m =1, b=1
т.к. формула касательной для нашей функции y = (e^x0) * x + b, то
e^x0 = 1, b = 1, откуда x0 = 0,
в точке x0 должна также совпасть координата y0 (значение функции f(x0) и точка касательной y(0)),
действительно, f(0) = e^0 = 1, y(0) = e^0 * 0 + 1 = 1,
совпадают, f(0) = y(0) = 1
таким образом прямая y=x+1 является касательной к y = e^x в точке с координатами (0,1)