Обозначим скорость теплохода в стоячей воде х км/ч. тогда его скорость по течению х+2 км/ч. На движение по течению он потратил 100/(х+2). А его скорость против течения х-2 км/ч. На движение против течения он потратил 64/(х-2). Получаем
100(x-2)+64(x+2)=9(x+2)(x-2) 100x-200+64x+128=9(x²-4) 164x-72=9x²-36 9x²-36-164x+72=0 9x²-164x+36=0 D=164²-4*9*36=25600 √D=160 x₁=(164-160)/18=4/18=2/9 - отбрасываем, так как при движении с такой скоростью теплоход не сможет плыть против течения x₂=(164+160)/18=324/18=18 ответ: скорость теплохода в стоячей воде 18 км/ч
Начнем со второй системы. Она решается устно. Первое уравнение пропорционально второму с коэффициентом пропорциональности, равным 2. 24*2 = 24*х, откуда х = 2. Тогда у1 = 2, у2 = -2. ответ: (2; 2), (2; -2).
В третьей достаточно сложить оба уравнения. получим: х^2 = 1, откуда х1 = 1, тогда у1 = 5, и х2 = -1, тогда у2 = 5. ответ: (1; 5), (-1; 5)
В первой системе приравняем первое значение у ко второму, получим: 5x^2 - 9x = 5x - 9, откуда х1 = 6, тогда у1 = 21, и х2 = - 2/5, тогда у2 = -11. ответ: (6; 21), (- 2/5; - 11)
тогда его скорость по течению х+2 км/ч. На движение по течению он потратил 100/(х+2).
А его скорость против течения х-2 км/ч. На движение против течения он потратил 64/(х-2).
Получаем
100(x-2)+64(x+2)=9(x+2)(x-2)
100x-200+64x+128=9(x²-4)
164x-72=9x²-36
9x²-36-164x+72=0
9x²-164x+36=0
D=164²-4*9*36=25600
√D=160
x₁=(164-160)/18=4/18=2/9 - отбрасываем, так как при движении с такой скоростью теплоход не сможет плыть против течения
x₂=(164+160)/18=324/18=18
ответ: скорость теплохода в стоячей воде 18 км/ч
Первое уравнение пропорционально второму с коэффициентом пропорциональности, равным 2.
24*2 = 24*х, откуда х = 2.
Тогда у1 = 2, у2 = -2.
ответ: (2; 2), (2; -2).
В третьей достаточно сложить оба уравнения.
получим: х^2 = 1, откуда х1 = 1, тогда у1 = 5, и х2 = -1, тогда у2 = 5.
ответ: (1; 5), (-1; 5)
В первой системе приравняем первое значение у ко второму, получим:
5x^2 - 9x = 5x - 9, откуда х1 = 6, тогда у1 = 21, и х2 = - 2/5, тогда у2 = -11.
ответ: (6; 21), (- 2/5; - 11)