Поскольку необходимо представить число 68 в виде суммы двух чисел, то пусть первое число х, тогда второе число (68-х). Тогда сумма квадратов слагаемых будет равна: х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя 1) с производной (2х²-136х+4624)'=4x-136 4x-136=0 4x=136 x=136:4 х=34 Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика y=2х²-136х+4624 Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы. х₀=-b/2a=-(-136)/4=34
Надеюсь, вопрос оканчивается "…на 5 остаток 4" Отталкиваемся от признаков деления на: 2 - последняя цифра делится на 2(0, 2, 4, 6, 8); 4 - число из двух последних цифр делится на 4(00, 04, 08, 12, 16…92, 96); 5 - последняя цифра делится на 5. Прибавляем необходимый остаток от деления к этим "хвостикам" и смотрим, как сочетаются варианты. Получаем, что две последние цифры числа могут быть 19, 39, 59, 79, 99. Надеюсь, установить, какое из этих чисел даёт в остатке 2 при делении на 3, получится самостоятельно.
Тогда сумма квадратов слагаемых будет равна:
х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя
1) с производной
(2х²-136х+4624)'=4x-136
4x-136=0
4x=136
x=136:4
х=34
Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика
y=2х²-136х+4624
Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы.
х₀=-b/2a=-(-136)/4=34
34+34=68
Отталкиваемся от признаков деления на:
2 - последняя цифра делится на 2(0, 2, 4, 6, 8);
4 - число из двух последних цифр делится на 4(00, 04, 08, 12, 16…92, 96);
5 - последняя цифра делится на 5.
Прибавляем необходимый остаток от деления к этим "хвостикам" и смотрим, как сочетаются варианты. Получаем, что две последние цифры числа могут быть 19, 39, 59, 79, 99.
Надеюсь, установить, какое из этих чисел даёт в остатке 2 при делении на 3, получится самостоятельно.