Когда говорят упростить выражение, подразумевают конкретные математические действия с этим выражением, в результате чего оно примет иной вид.
Такими действиями могут быть раскрытие скобок, внесение и вынесение множителя за скобку, деление (сокращение), умножение, возведение в степень, приведение дробей к общему знаменателю и много других операций.
При этом часто используют формулы сокращенного умножения и теоремы, а в тригонометрии от простых формул приведения до самых сложных тригонометрических выражений.
Чем старше школьник, тем больше формул он знает и обладает богатым арсеналом математических действий.
В чем смысл таких действий
Задачи на упрощение выражений встречаются с самых младших классов. Дети сами того не осознавая, учатся шевелить мозгами в нужном направлении, чтобы преобразовать одно выражение в другое.
Разумеется, все задания составляются таким образом, что в любом случае они приводятся к более простому виду или подходящему для дальнейших операций.
Однако, при таком подходе теряется общий смысл поставленной задачи.
Когда ученик слышит, что надо что-то упростить, то машинально начинает перебирать всевозможные математические действия в голове, не задаваясь вопросом, а для чего упрощать?
Приведем наглядный пример
Допустим, сказано упростить выражение (a+b)2. В этом случае абсолютно каждый нормальный школьник раскроет скобки и будет доволен самим собой. Без сарказма это действительно так и это нормально.
Но вот другая постановка задачи: упростите выражение (a+b)2, затем подставьте следующие числовые значения a=⅔, b=⅓ и запишите получившееся число.
Кто теперь скажет, что раскрыть скобки, затем подставить a=⅔ и b=⅓, а затем вычислить ответ, это легче, чем сразу найти a+b=⅔+⅓=1? После этого возводи единицу хоть в сотую степень!
Заключение
Итак, главная цель задач на упрощение выражений в том, чтобы научить вас применять те или иные математические действия над выражениями.
Это обязательно нужно уметь делать. Но более важная проблема в том, чтобы научиться применять необходимые действия в нужный момент и воспользоваться результатом преобразования.
Благо есть онлайн калькуляторы упрощения выражений, например, такой как наш, с которого можно проверить свои вычислительные результаты.
Из первого ящика могли переложить: A₁ - 2 красных (К) A₂ - 2 синих (С) A₃ - 1К и 1С
Тогда во втором ящике окажется: A₁ - 6К + 3С A₂ - 4К + 5С A₃ - 5К + 4С
Т.о. во втором ящике из 9 папок с вероятностью 1/21 будет 6 красных, с вероятностью 10/21 или 5, или 4 красных.
P(B₁) = 6/9 = 2/3 P(B₂) = 5/9 P(B₃) = 4/9
Значит, общая вероятность достать красную папку равна сумме произведений вероятности получения определенного состояния во втором ящике на вероятность достать красную папку при этом состоянии.
Когда говорят упростить выражение, подразумевают конкретные математические действия с этим выражением, в результате чего оно примет иной вид.
Такими действиями могут быть раскрытие скобок, внесение и вынесение множителя за скобку, деление (сокращение), умножение, возведение в степень, приведение дробей к общему знаменателю и много других операций.
При этом часто используют формулы сокращенного умножения и теоремы, а в тригонометрии от простых формул приведения до самых сложных тригонометрических выражений.
Чем старше школьник, тем больше формул он знает и обладает богатым арсеналом математических действий.
В чем смысл таких действий
Задачи на упрощение выражений встречаются с самых младших классов. Дети сами того не осознавая, учатся шевелить мозгами в нужном направлении, чтобы преобразовать одно выражение в другое.
Разумеется, все задания составляются таким образом, что в любом случае они приводятся к более простому виду или подходящему для дальнейших операций.
Однако, при таком подходе теряется общий смысл поставленной задачи.
Когда ученик слышит, что надо что-то упростить, то машинально начинает перебирать всевозможные математические действия в голове, не задаваясь вопросом, а для чего упрощать?
Приведем наглядный пример
Допустим, сказано упростить выражение (a+b)2. В этом случае абсолютно каждый нормальный школьник раскроет скобки и будет доволен самим собой. Без сарказма это действительно так и это нормально.
Но вот другая постановка задачи: упростите выражение (a+b)2, затем подставьте следующие числовые значения a=⅔, b=⅓ и запишите получившееся число.
Кто теперь скажет, что раскрыть скобки, затем подставить a=⅔ и b=⅓, а затем вычислить ответ, это легче, чем сразу найти a+b=⅔+⅓=1? После этого возводи единицу хоть в сотую степень!
Заключение
Итак, главная цель задач на упрощение выражений в том, чтобы научить вас применять те или иные математические действия над выражениями.
Это обязательно нужно уметь делать. Но более важная проблема в том, чтобы научиться применять необходимые действия в нужный момент и воспользоваться результатом преобразования.
Благо есть онлайн калькуляторы упрощения выражений, например, такой как наш, с которого можно проверить свои вычислительные результаты.
Желаем успехов!
A₁ - 2 красных (К)
A₂ - 2 синих (С)
A₃ - 1К и 1С
Тогда во втором ящике окажется:
A₁ - 6К + 3С
A₂ - 4К + 5С
A₃ - 5К + 4С
Т.о. во втором ящике из 9 папок с вероятностью 1/21 будет 6 красных, с вероятностью 10/21 или 5, или 4 красных.
P(B₁) = 6/9 = 2/3
P(B₂) = 5/9
P(B₃) = 4/9
Значит, общая вероятность достать красную папку равна сумме произведений вероятности получения определенного состояния во втором ящике на вероятность достать красную папку при этом состоянии.
P(A) = P(A₁)P(B₁) + P(A₂)P(B₂) + P(A₃)P(B₃) = 1/21*2/3 + 10/21*5/9 + 10/21*4/9 = 1/21(6/9 + 50/9 + 40/9) = 1/21(96/9) = 1/21(32/3) = 32/63.
Вероятность того, что достали красную папку, равна 32/63.