1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
ответ: х= -1/2
Объяснение: 1) ОДЗ: х≠0 ⇒ х = 0 -точка разрыва функции; 2) найдём промежутки возрастания и убывания функции: y'= e^(1/x) · (-1/x²)= - e^(1/x) / x², ⇒ уравнение y'=0 e^(1/x) / x² =0 корней не имеет; y'<0 на (-∞;0) -убывает и y'< 0 на (0; +∞) -убывает. 3) Найдём промежутки вогнутости и выпуклости функции: y'' = 2e^(1/x) /x³ + e^(1/x) /x⁴ = (2x+1) · e^(1/x) /x⁴ ; если y''=0, то (2x+1) · e^(1/x) /x⁴ =0 , ⇒х= -1/2; на (-∞ ;-1/2) y''<0 т.е. функция выпукла; на (-1/2; 0) y''>0 , т.е. функция вогнута ; на (0; +∞) y''>0 , т.е. функция вогнута. Значит х=-1/2 точка перегиба
(x - 1)^2*(x + 2) = 0
(x - 1)^2 = 0
x - 1 = 0
x = 1
x + 2 = 0
x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 1)(x - 3) = 0
x^2 = 1
x₁ = 1
x₂= - 1;
x - 3 = 0
x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 4)^2*(x - 3) = 0
x - 4 = 0
x = 4
x - 3 = 0
x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 4)(x + 1) = 0
x^2 = 4
x₁ = 2;
x₂ = - 2
x + 1 = 0
x₃ = - 1