1) х = 0 2) (x+1)(x-1)=0 х^2 - 1 = 0 х^2 = 1 х = +1 и - 1 3) х = 1\2 4) х = 0 и х=1,4 5) решений нет дискриминант отрицательный 6) Х=17 х= -1 8) решений нет Разложение 1) x²+x-6 = (х+3)(х-2) 2) 2x² - x - 3.= (х-1.5)(х+1) Задача пусть скорость первого х тогда скорость второго х+3
тогда первый проезжает весь путь(36 км) за 36/х(ч), а второй за 36/(х+3)(ч)
составим уравнение
36/х-36/х+3=1
36/х-36/х+3-1=0
36(х+3)-36х-х(х+3)/х(х+3)=0
36(х+3)-36х-х(х+3)=0
36х+36*3-36х-Х^2-3х=0
-х^2-3х+108=0|:-1
х^2+3х-108=0
D=9+432=441
корень из D=21
х1=-3-21/2=-12(не удовлетворяет условию задачи)
х2=-3+21/2=9(подходит)
Х+3=9+3=12
ответ:9км/ч скорость первого, 12 км/ч скорость второго.
1. Область визначення функції D(y)=R 2. Функція не періодична 3. y(-x)=3x²-x³=-(-3x²+x) Отже, функція ні парна ні непарна. 4. Точки перетину з віссю Ох і Оу 4.1. З віссю Ох (у=0)
(0;0), (-3;0) - точки перетину з віссю Ох 4.2. З віссю Оу(x=0) y=0 (0;0) - з віссю Оу 5. Точки екстремуму (зростання і спадання функції)
___+___(-2)___-__(0)____+___ Отже, функція спадає на проміжку х ∈ (-2;0), а зростає на проміжку (-∞;-2) і (0;+∞). В точці х=-2 функція має локальний максимум, а в точці х=0 - локальний мінімум
6. Точки перегину
__+___(-1)___-__ На проміжку (-∞;-1) функція зігнута вгору, а на проміжку (-1;∞) - вниз
Похилих, горизонтальних і вертикальних асимптот немає
2) (x+1)(x-1)=0
х^2 - 1 = 0
х^2 = 1
х = +1 и - 1
3) х = 1\2
4) х = 0 и х=1,4
5) решений нет дискриминант отрицательный
6) Х=17 х= -1
8) решений нет
Разложение
1) x²+x-6 = (х+3)(х-2)
2) 2x² - x - 3.= (х-1.5)(х+1)
Задача
пусть скорость первого х тогда скорость второго х+3
тогда первый проезжает весь путь(36 км) за 36/х(ч), а второй за 36/(х+3)(ч)
составим уравнение
36/х-36/х+3=1
36/х-36/х+3-1=0
36(х+3)-36х-х(х+3)/х(х+3)=0
36(х+3)-36х-х(х+3)=0
36х+36*3-36х-Х^2-3х=0
-х^2-3х+108=0|:-1
х^2+3х-108=0
D=9+432=441
корень из D=21
х1=-3-21/2=-12(не удовлетворяет условию задачи)
х2=-3+21/2=9(подходит)
Х+3=9+3=12
ответ:9км/ч скорость первого, 12 км/ч скорость второго.
D(y)=R
2. Функція не періодична
3. y(-x)=3x²-x³=-(-3x²+x)
Отже, функція ні парна ні непарна.
4. Точки перетину з віссю Ох і Оу
4.1. З віссю Ох (у=0)
(0;0), (-3;0) - точки перетину з віссю Ох
4.2. З віссю Оу(x=0)
y=0
(0;0) - з віссю Оу
5. Точки екстремуму (зростання і спадання функції)
___+___(-2)___-__(0)____+___
Отже, функція спадає на проміжку х ∈ (-2;0), а зростає на проміжку (-∞;-2) і (0;+∞). В точці х=-2 функція має локальний максимум, а в точці х=0 - локальний мінімум
6. Точки перегину
__+___(-1)___-__
На проміжку (-∞;-1) функція зігнута вгору, а на проміжку (-1;∞) - вниз
Похилих, горизонтальних і вертикальних асимптот немає