Відомо, що x > у. Використовуючи властивості нерівностей, запишіть правильну нерівність, яку одержимо, КОЛИ: Від обох частин нерівності віднімемо число 3
W = d + [ (13m - 1) / 5 ] + y + [ y / 4 ] + [ c / 4 ] - 2c
где d - число месяца; m - номер месяца, начиная с марта (март=1, апрель=2, ..февраль=12); y - номер года в столетии (например, для 1965 года y=65. Для января и февраля 1965 года, т. е. для m=11 или m=12 номер года надо брать предыдущий, т. е. y=64); c - количество столетий (например, для 2000 года c=20. И здесь для января и февраля 2000 года надо брать предыдущее столетие с=19); квадратные скобки означают целую часть полученного числа (отбрасываем дробную) .
Результат W делите на 7 и модуль остатка от деления даст день недели (воскресенье=0, понедельник=1, ..суббота=6)
Пример: для 31 декабря 2008 года определяем: d=31, m=10, y=8, c=20
нет
Объяснение:
2x² +2x +1 -7y² = 2007 ⇔ 2x²+2x -2006 = 7y² ( 1 )
так как левая часть равенства ( 1 ) - четное число , то и правая
часть кратна 2 ⇒ 7y² делится на 2 ⇒ y делится на 2 ⇒
y = 2k ; k∈Z , подставим в (1) вместо y число 2к :
2x²+2x -2006 =28k² ⇒ x²+x -14k² = 1003 или :
x(x+1) -14k² = 1003 ( 2 )
x и ( x +1 ) - 2 последовательных натуральных числа ⇒ одно
из них обязательно четно ⇒ x(x+1) - четно ⇒ x(x+1) -14k² - четно
, как разность двух четных чисел , но 1003 - нечетное число
⇒ равенство ( 2) невозможно ⇒ уравнение (1) не имеет
решений в целых числах
W = d + [ (13m - 1) / 5 ] + y + [ y / 4 ] + [ c / 4 ] - 2c
где d - число месяца;
m - номер месяца, начиная с марта (март=1, апрель=2, ..февраль=12);
y - номер года в столетии (например, для 1965 года y=65. Для января и февраля 1965 года, т. е. для m=11 или m=12 номер года надо брать предыдущий, т. е. y=64);
c - количество столетий (например, для 2000 года c=20. И здесь для января и февраля 2000 года надо брать предыдущее столетие с=19);
квадратные скобки означают целую часть полученного числа (отбрасываем дробную) .
Результат W делите на 7 и модуль остатка от деления даст день недели (воскресенье=0, понедельник=1, ..суббота=6)
Пример: для 31 декабря 2008 года определяем:
d=31, m=10, y=8, c=20
По формуле находим:
W = 31 + [ ( 13 * 10 - 1 ) / 5 ] + 8 + [ 8 / 4 ] + [ 20 / 4 ] - 2 * 20 =
= 31 + 25 + 8 + 2 + 5 - 40 = 31
Теперь делим W на 7 и находим остаток от деления: 31 / 7 = 4 и 3 в остатке.
Тройка соответствует дню недели СРЕДА.
(с) Энциклопедия для детей, том 11, Математика, с. 159