Відстань 480км швидкий поїзд проїхав на 2 години швидше, ніж товарний.Яка швидкість кожного поїзда,якщо швидкість швидкого на 20км/год більша, ніж товарного?
Сначала решим первое неравенство (методом интервалов). В первой скобке получается нуль, если подставить 3. Во второй - если подставить -6. Отмечаем эти числа на числовой оси и ставим нужные знаки (рисунок 1, в приложении). Знак неравенства строгий, поэтому все точки выколотые.
Теперь решаем второе неравенство. Нуль в числителе получается, если подставить -6 (точка закрашенная, знак неравенства нестрогий). А в знаменателе - если подставить 0 (точка выколотая, по всем правилам арифметики на нуль делить нельзя). Теперь ставим нужные знаки (рисунок 2, в приложении).
Теперь объединяем все решения двух неравенств (рисунок три, приложение) и записываем окончательный ответ:
Примем всю работу по покраске забора за единицу. Пусть производительность труда Ивана равна х, тогда производительность Андрея равна 4х. Их общая производительность равна (х+4х) и равна 5х. Чтобы найти время, за которое будет покрашен забор, нужно всю работу поделить на производительность. Таким образом, Андрей и Иван вместе покрасят забор за (1/(5х)) часов, что по условию равно 2 ч. Составляем уравнение:
1/10 - производительность труда Ивана. 1 : (1/10) = 1 * 10 = 10 ч - за столько часов может покрасить забор Иван.
ответ: x ∈ (-∞; 0) ∪ (3; +∞) .
Сначала решим первое неравенство (методом интервалов). В первой скобке получается нуль, если подставить 3. Во второй - если подставить -6. Отмечаем эти числа на числовой оси и ставим нужные знаки (рисунок 1, в приложении). Знак неравенства строгий, поэтому все точки выколотые.
Теперь решаем второе неравенство. Нуль в числителе получается, если подставить -6 (точка закрашенная, знак неравенства нестрогий). А в знаменателе - если подставить 0 (точка выколотая, по всем правилам арифметики на нуль делить нельзя). Теперь ставим нужные знаки (рисунок 2, в приложении).
Теперь объединяем все решения двух неравенств (рисунок три, приложение) и записываем окончательный ответ:
x ∈ (-∞; 0) ∪ (3; +∞) .
Пусть производительность труда Ивана равна х, тогда производительность Андрея равна 4х. Их общая производительность равна (х+4х) и равна 5х. Чтобы найти время, за которое будет покрашен забор, нужно всю работу поделить на производительность. Таким образом, Андрей и Иван вместе покрасят забор за (1/(5х)) часов, что по условию равно 2 ч. Составляем уравнение:
1/10 - производительность труда Ивана.
1 : (1/10) = 1 * 10 = 10 ч - за столько часов может покрасить забор Иван.