a² = 12 b² = 3
c² = a² - b² = 12 - 3 = 9 ⇒ c = 3
Фокусы имеют координаты :
F₁ (0; - c) , F₂ (0 ; c) , где c = 3
Значит F₁(0 ; - 3) , F₂(0 ; 3)
Расстояние между фокусами равно 2с, а значит равно : 2 * 3 = 6
6.2)
a² = 10 b² = 26
Аналогично
c² = 26 - 10 = 16 ⇒ c = 4
Координаты фокусов :
F₁(0 ; - 4) , F₂(0 , 4)
Расстояние между фокусами равно 2с, то есть 8.
7.1)
a² = 25 ⇒ a = 5 b² = 9 ⇒ b = 3
c² = a² - b² = 25 - 9 = 16 ⇒ c = 4
В данном случае a > b поэтому эксцентриситетом будет отношение :
e = c/a = 4/5
7.2)
a² = 7 ⇒ a = √7 b² = 16 ⇒ b = 4
В этом случае b > a , поэтому :
c² = b² - a² = 16 - 7 = 9 ⇒ c = 3
e = c/b = 3/4
a² = 12 b² = 3
c² = a² - b² = 12 - 3 = 9 ⇒ c = 3
Фокусы имеют координаты :
F₁ (0; - c) , F₂ (0 ; c) , где c = 3
Значит F₁(0 ; - 3) , F₂(0 ; 3)
Расстояние между фокусами равно 2с, а значит равно : 2 * 3 = 6
6.2)
a² = 10 b² = 26
Аналогично
c² = 26 - 10 = 16 ⇒ c = 4
Координаты фокусов :
F₁(0 ; - 4) , F₂(0 , 4)
Расстояние между фокусами равно 2с, то есть 8.
7.1)
a² = 25 ⇒ a = 5 b² = 9 ⇒ b = 3
c² = a² - b² = 25 - 9 = 16 ⇒ c = 4
В данном случае a > b поэтому эксцентриситетом будет отношение :
e = c/a = 4/5
7.2)
a² = 7 ⇒ a = √7 b² = 16 ⇒ b = 4
В этом случае b > a , поэтому :
c² = b² - a² = 16 - 7 = 9 ⇒ c = 3
e = c/b = 3/4
а)(х+2)(4-х) = 4x -x^2 +8 -2x = -x^2 +2x +8
б)(y^2+3)(7-y) = 7y^2 -y^3 +21 -3y
2.Преобразуйте выражение в многочлен стандартного вида:
(a+3b)(a^2-3ab+9b^2) = a^3 -3a^2b +9ab^2 +3a^2b -9ab^2 +27b^3 =
= a^3 +27b^3
3.Найдите значения выражений:
(a+4)(2-a^2)-(3a+4)(4-a) при a=2
(2+4)(2 -2^2) -(3*2+4)(4-2) = 6*(2 -4) -(6+4)*2 = -12 -20 = -32
4.Решите уравнение
(4x-3)(2-x)=(-2x+3)(3+2x)
8x -4x^2 -6 +3x = -6x -4x^2 +9 +6x
8x -4x^2 -6 +3x = -4x^2 +9
8x -6 +3x = 9
11x = 9 +6
11x = 15
x = 15 / 11
5.Найдите значение выражения
(x-1)(x+1)(x^2+1)(x^4+1) при х=-2
(-2-1)(-2+1)((-2)^2 +1)((-2)^4 +1) = -3*(-1)*(4+1)(16+1) = 3*5*17 = 255
6.Решите уравнение
(x-2)(x+2)=0
x -2 = 0 x+2 = 0
x = 2 x = -2