В двух коробках вместе более 27 деталей. Если из второй коробки убрать 12 деталей, то число деталей в первой коробке будет более чем в 2 раза больше числа деталей во второй коробке. Если же убрать 10 деталей из первой коробки, то число деталей во второй коробке будет более чем в 9 раз больше числа деталей в первой коробке. Сколько деталей было в каждой коробке?
1
1.1818181818... = 1+(18/100+18/10000+18/1000000+... ) выражениее в скобках это сумма бесконечно убывающей геом. прогрессии, найдем элементы этой прогрессии:
b1 = 18/100 q = b2/b1 = (18/10000) / (18/100) = 1/100
(сумма убыв. геом. прогрессии)
S = b1/(1-q) = (18/100) / (1-1/100) = 18/(100* 1-1/100) 18/(100*99/100)
(трехэтажная дробь, 100 сокращается) = 18/99 = 2/11
следовательно 1.18181818 = 1 + 2/11 = 1 цел 2/11
2
[x/(x^2+1)]'
используем две формулы дифференцирования
(u/v)' = (vu'-uv')/v^2 (деление)
и
(x^n)' = n x^(n-1) (степенная)
вычисляем :
[ (x^2+1) * (x)' - x * (x^2+1)' ] / [ (x^2+1)^2 ] (дробь)
(x)' = 1
и
(x^2+1)' = 2x (смотри формулы выше, степенная)
[ (x^2+1) * 1 - x * 2x] / [ (x^2+1)^2 ] =
= [ (x^2+1) - 2x^2] / [ (x^2+1)^2 ] (дробь)
Если есть желание сокращать выражение задание я выполнил, вычислил производную
Площадь пр-ка S = x*y (1)
Периметр Р = 2(х + у)
72 = 2(х + у)
36 = х + у,
откуда у = 36 - х (2)
Подставим полученное в (1)
S = x*(36 - х)
S = 36x - х^2
Найдём производную
S' = 36 - 2x
Приравняем её нулю
36 - 2x = 0
2х = 36
х = 18
При х=18 имеет место экстремум функции S(y)
В этой точке производная меняет знак с + на -, поэтому это точка максимума
Smax = 36*18 - 18^2 = 324 (кв.см)
Подставим х=18 в (2) и получим у
у = 36 - х = 36 - 18 = 18(см)
ответ: Наибольшую площадь имеет квадрат со стороной, равной 18см.