В кабинете есть несколько одиночных парт (за каждой партой может сидеть не более одного человека; других парт в кабинете нет). Во время перемены треть учащихся вышли в коридор, а в кабинете осталось количество людей, равное 5/9 от общего числа парт. Сколько парт в аудитории, если их не более
Сначала определим значение а из второго уравнения, для чего подставим в него заданные корни (5;-3):
a * x + 3 * y = 11;
a * 5 + 3 * ( - 3) = 11;
a * 5 - 9 = 11;
а * 5 = 11 + 9;
а * 5 = 20;
а = 20/5;
а = 4.
Теперь можно записать заданную систему в нормальном виде:
1) 5 * x + 2 * y = 12;
2) 4 * х + 3 * у = 11.
Умножим 1) на 3, а 2) на 2:
1_1) 15 * x + 6 * y = 36;
2_1) 8 * х + 6 * у = 22.
Теперь вычтем из 1_1) уравнение 2_1):
15 * x + 6 * y - 8 * х - 6 * у = 36 - 22;
15 * x - 8 * х + 6 * y - 6 * у = 36 - 22;
7 * х = 14;
х = 14/7;
х = 2.
Выразим у из 1):
5 * x + 2 * y = 12;
2 * y = 12 - 5 * x;
у = 6 - 2,5 * х.
Подставим х = 2:
у = 6 - 2,5 * 2 = 1.
ответ: (2; 1).
Объяснение:
Сначала определим значение а из второго уравнения, для чего подставим в него заданные корни (5;-3):
a * x + 3 * y = 11;
a * 5 + 3 * ( - 3) = 11;
a * 5 - 9 = 11;
а * 5 = 11 + 9;
а * 5 = 20;
а = 20/5;
а = 4.
Теперь можно записать заданную систему в нормальном виде:
1) 5 * x + 2 * y = 12;
2) 4 * х + 3 * у = 11.
Умножим 1) на 3, а 2) на 2:
1_1) 15 * x + 6 * y = 36;
2_1) 8 * х + 6 * у = 22.
Теперь вычтем из 1_1) уравнение 2_1):
15 * x + 6 * y - 8 * х - 6 * у = 36 - 22;
15 * x - 8 * х + 6 * y - 6 * у = 36 - 22;
7 * х = 14;
х = 14/7;
х = 2.
Выразим у из 1):
5 * x + 2 * y = 12;
2 * y = 12 - 5 * x;
у = 6 - 2,5 * х.
Подставим х = 2:
у = 6 - 2,5 * 2 = 1.
ответ: (2; 1).
- 5( 1 -(sinx - cosx)² ) - 16(sinx-cosx)+8=0 ;
*sinx - cosx)² = sin²x -2sinx*cosx +cos²x =1 -sin2x⇒ sin2x =1 -(sinx - cosx)² *
5*(sinx - cosx)² - 16*(sinx - cosx)+ 3=0 ; * * *замена : t =(sinx-cosx) * * *
можно и так [ это квадратное уравнение относительно (sinx - cosx) ]
sinx - cosx = (8 ±7)/5 || D/4 =(18/2)² -5*3 =64 -15 =49 =7² ||
[ sinx - cosx = (8 +7)/5 =3 ; sinx - cosx = (8 -7)/5 =1 / 5 =0,2.
а) sinx - cosx =3 не имеет решения
б) sinx - cosx =0,2 ;
√2 *sin(x -π/4) =0,2 ;
sin(x -π/4) =0,1√2 ;
x -π/4 =(-1)^n * arcsin(0,1√2) +πn , n ∈ Z.x = π/4 + (-1)^n *arcsin(0,1√2) + πn , n ∈ Z.
ответ : π/4 +(-1)^n *arcsin(0,1√2) +πn , n ∈ Z.