В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Малефисента7
Малефисента7
11.11.2022 04:27 •  Алгебра

В классе каждый ученик — либо болтун, либо молчун, причем каждый болтун дружит хотя бы с одним молчуном.
Болтун молчит, если в кабинете находится нечётное число его друзей — молчунов.
Докажите, что учитель может пригласить на факультатив не менее половины класса так,
чтобы все присутствующие на факультативе болтуны молчали.

Показать ответ
Ответ:
kbvovap0drsr
kbvovap0drsr
26.11.2021 06:22

Докажем утверждение индукцией по числу n учеников в классе.

Для n = 3 утверждение очевидно.

Предположим, что оно верно при n ≤ N. Пусть n = N + 1.

Утверждение верно, если в классе ровно один молчун. Пусть их не менее двух.

Выделим молчуна A и его друзей — болтунов B1, … ,Bk.

Для оставшихся n – 1 – k/2 учеников утверждение верно, т.е. можно выделить группу M, в которой каждый болтун дружит с нечётным числом молчунов и в M входит не менее учеников.

Предположим, что болтуны B1, … ,Bm дружат с нечётным числом молчунов из M, а Bm + 1, … ,Bk — с чётным числом.

Тогда, если,m больше k+1/2 то добавим к группе M болтунов B1, … ,Bm,

а если,m меньше k+1/2 то добавим к группе M болтунов Bm + 1, … ,Bk и молчуна A.

В обоих случаях мы получим группу учеников, удовлетворяющую условию задачи.

Объяснение:

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота