Через точку C проведите прямую, параллельную MN, до пересечения с прямой AB в точке K. Треугольник ACK – равнобедренный.
Решение
Через точку C проведём прямую, параллельную MN, до пересечения с прямой AB в точке K. Поскольку M – середина BC и MN || CK, то отрезок MN – средняя линия треугольника BCK. Поэтому KN = BN, а так как N – середина AD, то AK = BD = AC. Значит, треугольник ACK – равнобедренный.
BAC – внешний угол равнобедренного треугольника ACK, поэтому ∠BNM = ∠BKC = ½ ∠BAC = 20°.
ответ:10 часов 15 минут
Ну для начала смотрим, что отец и сын встретились на расстоянии 12 км от Кальтухи, отец же выехал из Кальтухи, значит отец проехал 12 км
А сын проехал:1) 30,75км - 12км = 18,75 км
2)узнаем сколько часов ехал Эмиль для этого расстояние делим на скорость: 18,75 : 15км/ч = 1(ч) 15(м)
3)10ч + 1ч 15м= 11(ч) 15(м)- это во столько они встретились
4)Узнаем сколько по времени ехал отец: 12км : 12км/ч = 1(ч)
5)А теперь, на сколько позже выехал отец: 1ч 15 м - 1ч = 15м
6)10ч(во столько выехал Эмиль)+ 15 минут(на столько позже выехал отец)=10ч 15 м: в это время выехал отец из Кальтухи.
Вроде бы так) Удачи
3) 20°
Объяснение:
Подсказка
Через точку C проведите прямую, параллельную MN, до пересечения с прямой AB в точке K. Треугольник ACK – равнобедренный.
Решение
Через точку C проведём прямую, параллельную MN, до пересечения с прямой AB в точке K. Поскольку M – середина BC и MN || CK, то отрезок MN – средняя линия треугольника BCK. Поэтому KN = BN, а так как N – середина AD, то AK = BD = AC. Значит, треугольник ACK – равнобедренный.
BAC – внешний угол равнобедренного треугольника ACK, поэтому ∠BNM = ∠BKC = ½ ∠BAC = 20°.