Если сумма трех чисел делится на 6, то эта сумма - число четное. Здесь или все слагаемые - четные числа, или одно слагаемое - четное число, а два других - нечетные. В обоих случаях кубы этих чисел будут или все четные, или одно четное и два нечетных, что в сумме даст четное число. Остается доказать делимость на 3. Вариант, когда все слагаемые кратны 3 пояснений не требует. Рассмотрим другие варианты слагаемых 1. (3а+1) + (3в+1) + (3с-2) 2. 3а + (3в-1) + (3с+1) Сумма слагаемых кратна 3, т. к. свободный член = 0. Возводим в куб 27a^3 + 27a^2 + 9a + 1 + 27в^3 + 27в^2 + 9в + 1 + 27c^3 + 27c^^2 + 9c - 8 Все члены, кроме свободных, кратны 3. СВободные члены в сумме 1 + 1 - 8 = -6 дают число тоже кратное 3. Значит сумма кубов чисел кратна 3, а следовательно и 6. Аналогично доказывается другой вариант - сумма свободных членов будет кратна 3 или равна 0.
Объяснение:
13. y=3x² y=0 x=-3 x=2 S=?
S=₋₃∫²3x²dx=x³ ₋₃|²=2³-(-3)³=8-(-27)=8+27=35.
ответ: S=35 кв.ед.
14. f(x)=x³ x₀=1 yk=?
yk=f(x₀)+f'(x₀)*(x-x₀)
f(1)=1³=1
f'(1)=(x³)'=3x²=3*1²=3*1=3 ⇒
yk=1+3*(x-1)=1+3x-3=3x-2.
ответ: yk=3x-2.
16. Sполн=320π см² Sосев. сеч.=192 см² Vцил.=?
Sполн=2*Sосн.+Sбок=2*πr²+2πrh=2π*(r²+h)=320π
2π*(r²+rh)=320π |÷2π
r²+h=160
Sосев. сеч.=2rh=192
2rh=192 |÷2
rh=96 ⇒
{rh=96 {rh=96 {h=96/r h=96/8=12 (см)
{r²+rh=160 {r²+96=160 {r²=64 r₁=8 (см) r₂=-8 ∉
V цил.=πr²h=π*8²*12=π*64*12=768π≈2412,7 (cм³).
Остается доказать делимость на 3. Вариант, когда все слагаемые кратны 3 пояснений не требует. Рассмотрим другие варианты слагаемых
1. (3а+1) + (3в+1) + (3с-2)
2. 3а + (3в-1) + (3с+1)
Сумма слагаемых кратна 3, т. к. свободный член = 0. Возводим в куб
27a^3 + 27a^2 + 9a + 1 + 27в^3 + 27в^2 + 9в + 1 + 27c^3 + 27c^^2 + 9c - 8
Все члены, кроме свободных, кратны 3. СВободные члены в сумме
1 + 1 - 8 = -6
дают число тоже кратное 3.
Значит сумма кубов чисел кратна 3, а следовательно и 6.
Аналогично доказывается другой вариант - сумма свободных членов будет кратна 3 или равна 0.