в параллелограмме одна из диагоналей равна одной из сторон параллелограмма,острый угол равен 40 градусов.найдите углы,которые составляют эта диагональ с сторонами параллелограмма
Пусть z=a*10+b - искомое двузначное число. По условию, a*10+b=4*(a+b) и a*10+b=a*b+16. Получена система уравнений:
10*a+b=4*a+4*b
10*a+b=a*b+16,
которую можно записать и так:
6*a=3*b
10*a+b=a*b+16
Из первого уравнения находим b=2*a. Подставляя это выражение во второе уравнение, получаем уравнение 12*a=2*a²+16, которое приводится к виду a²-6*a+8=0. Решая его, находим a1=4 и a2=2. Отсюда b1=2*a1=8 и b2=2*a2=4. Таким образом, получаем два искомых числа: z1=10*a1+b1=40+8=48 и z2=10*a2+b2=20+4=24.
Знаменатели дробей ≠ 0 ⇒ x ≠ 1 ; х ≠ - 1 .
х(х+1) - 5(х - 1) = 2
x² + x - 5x + 5 = 2
x² - 4x + 5 - 2 = 0
x² - 4x + 3 = 0
D = (-4)² - 4*1*3 = 16 - 12 = 4 = 2²
D>0 - два корня уравнения
х₁ = ( - (-4) - 2) / (2*1) = (4-2)/2 = 2/2 = 1 не подходит (т.к. х ≠ 1)
х₂ = (- (-4) + 2)/ (2*1) = (4+2)/2 = 6/2 = 3
ответ : х = 3
4(1-x) -3(x+2)< 5
4 - 4x - 3x - 6 < 5
- 7x - 2 < 5
- 7x < 5 + 2
- 7x < 7 | * (-1)⇒ меняем знак неравенства
7х > - 7
x > - 1
x∈ (-1 ; + ∞)
ответ: 48 и 24.
Объяснение:
Пусть z=a*10+b - искомое двузначное число. По условию, a*10+b=4*(a+b) и a*10+b=a*b+16. Получена система уравнений:
10*a+b=4*a+4*b
10*a+b=a*b+16,
которую можно записать и так:
6*a=3*b
10*a+b=a*b+16
Из первого уравнения находим b=2*a. Подставляя это выражение во второе уравнение, получаем уравнение 12*a=2*a²+16, которое приводится к виду a²-6*a+8=0. Решая его, находим a1=4 и a2=2. Отсюда b1=2*a1=8 и b2=2*a2=4. Таким образом, получаем два искомых числа: z1=10*a1+b1=40+8=48 и z2=10*a2+b2=20+4=24.