1) Значение функции - это значение у, а значение аргумента - значение х. Подставляем данные в формулу, считаем (рис.1)
2) Функция y=-2x+5 это линейная функция, а значит графиком для неё будет являться прямая. Чтобы построить график, берем два любых значений Х и подставляем их в формулу, находим У. Полученные точки (это 5 и 3) отмечает на координатной плоскости, проводим через них прямую, получаем наш график. По графику находим, что при х=-0,5 у=6. (рис.2)
3) Графиком функции y=-5 будет являться прямая, проходящая через -5 оси У и параллельная оси Х. График функции у=-0,5х строим аналогичным образом, что и во 2 номере.
1) Значение функции - это значение у, а значение аргумента - значение х. Подставляем данные в формулу, считаем (рис.1)
2) Функция y=-2x+5 это линейная функция, а значит графиком для неё будет являться прямая. Чтобы построить график, берем два любых значений Х и подставляем их в формулу, находим У. Полученные точки (это 5 и 3) отмечает на координатной плоскости, проводим через них прямую, получаем наш график. По графику находим, что при х=-0,5 у=6. (рис.2)
3) Графиком функции y=-5 будет являться прямая, проходящая через -5 оси У и параллельная оси Х. График функции у=-0,5х строим аналогичным образом, что и во 2 номере.
Надеюсь, что
Даны координаты вершин треугольника ABC:
A(20;5) B(-4;12) C(-8;9).
Расчет длин сторон
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √625 = 25.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √25 = 5.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √800 ≈ 28,28427.
Площадь треугольника ABC
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 50.
Длины высоты равна АН = 2S/ВС = 2*50/5 = 20.
Основание медианы АМ (точка пересечения медианы со стороной ВС).
М(хМ; уМ) Хв+Хс Ув+Ус х у
2 2 М -6 10,5.
Длина медианы АМ равна √(-6-20)² + (10,5-5)²) = √706,25 ≈ 26,57536.
Длины биссектрисы АК равна:
АК = √(АВ*АС*((АВ+АС)²-ВС²)) = 26,47415.
АВ+АС
Косинус угла В равен:
cos В = АВ²+ВС²-АС² = -0,6
2*АВ*ВС
B = 2,2143 радиан.
B = 126,8699 градусов.