Или, по-другому, сколько сочетаний из всех пяти букв S, P, O, R и T можно составить. Буквы не должны повторяться. Нужно использовать все буквы, значит "слова" должны состоять из пяти букв.
Ищем советания из пяти букв:
первой ставим любую из пяти букв, таких вариаций 5 (первая буква — S, или первая буква — P, или первая буква — O, и т. д.);
второй ставим любую из четырёх оставшихся букв, — 4;
третьей ставим любую из трёх оставшихся букв, — 3;
четвёртой ставим любую из двух оставшихся букв, — 2;
пятой ставим оставшуюся букву, — 1.
Умножаем, 5 × 4 × 3 × 2 × 1 = 120 — столько сочетаний букв ("слов") всего можно составить.
НО. Нам нужно, чтобы две буквы "S" и "P" не стояли рядом.
если буквы стоят на первом и втором месте:
SP×××
первой ставим букву S — 1, второй ставим P — 1, третьей ставим любую из трёх оставшихся букв — 3, четвёртой ставим любую из двух оставшихся букв — 2, пятой ставим оставшуюся букву — 1,
1 × 1 × 3 × 2 × 1 = 6,
PS×××
1 × 1 × 3 × 2 × 1 = 6;
если на втором и третьем месте:
×SP××
первой ставим не S, и не P, любую из трех оставшихся букв — 3, второй ставим S — 1, третьей ставим P — 1, четвёртой ставим любую из двух оставшихся букв — 2, пятой ставим оставшуюся букву — 1,
3 × 1 × 1 × 2 × 1 = 6,
×PS××
3 × 1 × 1 × 2 × 1 = 6;
если на третьем и четвёртом месте:
××SP×
3 × 2 × 1 × 1 × 1 = 6,
××PS×
3 × 2 × 1 × 1 × 1 = 6;
если на четвёртом и пятом месте:
×××SP
3 × 2 × 1 × 1 × 1 = 6,
×××PS
3 × 2 × 1 × 1 × 1 = 6.
Складываем (6+6) + (6+6) + (6+6) + (6+6) = 48 — столько сочетаний, когда буквы "S" и "P" стоят рядом.
120 - 48 = 72 — столько "слов" можно составить из всех букв слова "SPORT" так, чтобы буквы "S" и "Р" не стояли рядом.
Найдем простую радикальную форму данного в задании корня, для этого умножим его на сопряженное число: 1/(6+√2) * (6-√2) / (6-√2) = (6-√2) / (6-√2)(6+√2) =(6-√2) / (36-2) = (6-√2)/34
если наше уравнение ax^2 + bx + c =0 должно быть c рац. коэфф., то кв. корень из дискриминанта должен быть кратен √2(иначе кв. корню неоткуда взяться), откуда (и из формулы корней кв. ур-я) следует, что второй корень уравнения должен быть (6+√2)/34
пусть a = 1, тогда согласно теореме Виетта (6+√2)/34 * (6-√2)/34 = с (6+√2)/34 + (6-√2)/34 = -b
c = (36-2)/(34*34) = 1/34 b = -12/34 = -6/17
и наше уравнение x^2 -6/17x + 1/34 = 0 ну или в более человеческом виде (умножаем обе части на 34) 34x^2 - 12x + 1 =0
Или, по-другому, сколько сочетаний из всех пяти букв S, P, O, R и T можно составить. Буквы не должны повторяться. Нужно использовать все буквы, значит "слова" должны состоять из пяти букв.
Ищем советания из пяти букв:
первой ставим любую из пяти букв, таких вариаций 5 (первая буква — S, или первая буква — P, или первая буква — O, и т. д.);
второй ставим любую из четырёх оставшихся букв, — 4;
третьей ставим любую из трёх оставшихся букв, — 3;
четвёртой ставим любую из двух оставшихся букв, — 2;
пятой ставим оставшуюся букву, — 1.
Умножаем, 5 × 4 × 3 × 2 × 1 = 120 — столько сочетаний букв ("слов") всего можно составить.
НО. Нам нужно, чтобы две буквы "S" и "P" не стояли рядом.
если буквы стоят на первом и втором месте:
SP×××
первой ставим букву S — 1, второй ставим P — 1, третьей ставим любую из трёх оставшихся букв — 3, четвёртой ставим любую из двух оставшихся букв — 2, пятой ставим оставшуюся букву — 1,
1 × 1 × 3 × 2 × 1 = 6,
PS×××
1 × 1 × 3 × 2 × 1 = 6;
если на втором и третьем месте:
×SP××
первой ставим не S, и не P, любую из трех оставшихся букв — 3, второй ставим S — 1, третьей ставим P — 1, четвёртой ставим любую из двух оставшихся букв — 2, пятой ставим оставшуюся букву — 1,
3 × 1 × 1 × 2 × 1 = 6,
×PS××
3 × 1 × 1 × 2 × 1 = 6;
если на третьем и четвёртом месте:
××SP×
3 × 2 × 1 × 1 × 1 = 6,
××PS×
3 × 2 × 1 × 1 × 1 = 6;
если на четвёртом и пятом месте:
×××SP
3 × 2 × 1 × 1 × 1 = 6,
×××PS
3 × 2 × 1 × 1 × 1 = 6.
Складываем (6+6) + (6+6) + (6+6) + (6+6) = 48 — столько сочетаний, когда буквы "S" и "P" стоят рядом.
120 - 48 = 72 — столько "слов" можно составить из всех букв слова "SPORT" так, чтобы буквы "S" и "Р" не стояли рядом.
ответ: 72
1/(6+√2) * (6-√2) / (6-√2) = (6-√2) / (6-√2)(6+√2) =(6-√2) / (36-2) = (6-√2)/34
если наше уравнение ax^2 + bx + c =0 должно быть c рац. коэфф., то кв. корень из дискриминанта должен быть кратен √2(иначе кв. корню неоткуда взяться), откуда (и из формулы корней кв. ур-я) следует, что второй корень уравнения должен быть (6+√2)/34
пусть a = 1, тогда согласно теореме Виетта
(6+√2)/34 * (6-√2)/34 = с
(6+√2)/34 + (6-√2)/34 = -b
c = (36-2)/(34*34) = 1/34
b = -12/34 = -6/17
и наше уравнение
x^2 -6/17x + 1/34 = 0
ну или в более человеческом виде (умножаем обе части на 34)
34x^2 - 12x + 1 =0