В стране 130 городов. Между каждыми двумя из них либо есть дорога, либо её нет. Автомобилист находился в некотором городе, из которого вела ровно одна дорога. Проехав по дороге, он оказался во втором городе, из которого вели уже ровно две дороги. Проехав по одной из них, он оказался в третьем городе, из которого вели уже ровно три дороги, и так далее. В какой-то момент, проехав по одной из дорог, он оказался в N-м городе, из которого вели уже ровно N дорог. На этом автомобилист своё путешествие прекратил. (Для каждого 2⩽k⩽N из k-го города выходило ровно k дорог с учётом той, по которой автомобилист в этот город приехал.)
Какое наибольшее значение может принимать N?
В решении.
Объяснение:
Составьте математическую модель задачи и решите ее:
Катер 30 км против течения реки и 12 км по течению за то же время, за которое он может пройти по озеру 44 км. Определите скорость катера по озеру, если скорость течения реки составляет 2 км/ч.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - собственная скорость катера (по озеру).
х + 2 - скорость катера по течению.
х - 2 - скорость катера против течения.
44/х - время катера по озеру.
12/(х + 2) - время катера по течению.
30/(х - 2) - время катера против течения.
По условию задачи уравнение (математическая модель):
12/(х + 2) + 30/(х - 2) = 44/х
Умножить все части уравнения на х(х - 2)(х + 2), чтобы избавиться от дробного выражения:
12*х(х - 2) + 30*х(х + 2) = 44*(х² - 4)
12х² - 24х + 30х² + 60х = 44х² - 176
42х² - 44х² + 36х + 176 = 0
-2х² + 36х + 176 = 0/-2
х² - 18х - 88 = 0, квадратное уравнение, ищем корни:
D=b²-4ac =324 + 352 = 676 √D=26
х₁=(-b-√D)/2a
х₁=(18-26)/2
х₁= -8/2 = -4, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(18+26)/2
х₂=44/2
х₂=22 (км/час) - скорость катера по озеру.
Проверка:
30/20 + 12/24 = 1,5 + 0,5 = 2 (часа);
44/22 = 2 (часа);
2 = 2, верно.
x^4-7x^2-2x+20>0
добавив и вычев x^2, а число 20 представив в виде суммы 16+1+3, получим равносильное неравенство
x^4-8x^2+x^2-2x+16+1+3>0
группируя, получим равносильное неравенство
(x^4-8x^2+16)+(x^2-2x+1)+3>0
используя формулу квадрата двучлена, получим равносильное неравенство
(x^2-4)^2+(x-1)^2+3>0
которое очевидно выполняется, так как в левой части сумма квадратов двух выражений (неотрицательных) и положительного числа
(квадрат любого выражения неотрицателен!!)
(сумма неотрицательных выражений неотрицательное выражение)
(сумма неотрицательного и положительного положительное выражение)
Доказано