В таблице представлены ежемесячные продажи мороженого в тоннах в развлекательном комплексе. МЕСЯЦЫ I II III IV V VI VII VIII IX X XI XII Объем продаж 0,3; 0,8; 0,64; 0,74; 0,9; 1,2; 2,4; 2,6; 1,8; 1,24; 0,94; 0,68
Функция f(x)=-x^2 представляет собой обычную параболу x^2 отраженную симметрично относительно оси абсцисс, с учетом ограничения этой функции на промежутке [-2;0) получаем ее график (синий цвет)
Функция f(x)=1 представляет собой прямую параллельная оси абсцисс, с учетом ограничения этой функции на промежутке [0;1] получаем ее график (голубой цвет)
Функция f(x)=x^2 представляет собой обычную параболу, учетом ограничения этой функции на промежутке (1;2] получаем ее график (фиолетовый цвет)
Функция f(x)=-x+6 представляет собой прямую y=x отраженную симметрично относительно оси абсцисс и поднятую вдоль оси ординат на 6 единиц вверх, с учетом ограничений (2;6] получаем ее график (желтый цвет).
На вопросы по поводу возрастания, убывания и т.д функции можно ответь посмотря график построенной функции.
1° = pi/180 радиан ~ 0,017453293 радиан
1° = 1/360 оборота ~ 0,002777 оборота
1° = 400/360 градов ~ 1,111111 градов
Соотношение радиана с другими единицами измерения углов описывается формулой:
* 1 радиан = 1/2π оборотов = 180/π градусов = 200/π градов
Очевидно, 180° = π. Отсюда вытекает тривиальная формула пересчёта из градусов, минут и секунд в радианы и наоборот.
α[рад] = (π / 180) × α[°]
α[°] = (180 / π) × α[рад]
где: α[рад] — угол в радианах, α[°] — угол в градусах
1 рад ≈ 57,295779513° ≈ 57°17′44,806″
Функция f(x)=-x^2 представляет собой обычную параболу x^2 отраженную симметрично относительно оси абсцисс, с учетом ограничения этой функции на промежутке [-2;0) получаем ее график (синий цвет)
Функция f(x)=1 представляет собой прямую параллельная оси абсцисс, с учетом ограничения этой функции на промежутке [0;1] получаем ее график (голубой цвет)
Функция f(x)=x^2 представляет собой обычную параболу, учетом ограничения этой функции на промежутке (1;2] получаем ее график (фиолетовый цвет)
Функция f(x)=-x+6 представляет собой прямую y=x отраженную симметрично относительно оси абсцисс и поднятую вдоль оси ординат на 6 единиц вверх, с учетом ограничений (2;6] получаем ее график (желтый цвет).
На вопросы по поводу возрастания, убывания и т.д функции можно ответь посмотря график построенной функции.