Положим что такое возможно. Пусть k наименьшее общее кратное,а f наибольшый общий делитель.Тогда наши числа представимы в виде: a=k*n b=k*m По теореме о связи между НОК и НОД : k*f=a*b. Оно и очевидно. Тогда получим: k+k*m+k*n+k*m*n=999999 k*(1+m+n+m*n)=999999 k*(1+m)*(1+n)=999999 (нечетно) Тк произведение всех множителей нечетно,только когда все множители нечетны,то наименьшее общее кратное k также нечетно. А вот тк числа m+1 и n+1 тоже нечетным,то числа m и n четны,откуда следует четность чисел a и b. Но тогда очевидно что для этих чисел наименьшее общее кратное равно 2,что не является нечетным числом. То есть мы пришли к противоречию. Значит такое невозможно.
В общем виде решение линейного неравенства с одной переменной
можно изобразить так:
1) Неизвестные переносим в одну сторону, известные — в другую с противоположными знаками:
2) Если число перед иксом не равно нулю (a-c≠0), обе части неравенства делим на a-c.
Если a-c>0, знак неравенства не изменяется:
Если a-c<0, знак неравенства изменяется на противоположный:
Если a-c=0, то это — частный случай. Частные случаи решения линейных неравенств рассмотрим отдельно.
Примеры.
Это — линейное неравенство. Переносим неизвестные в одну сторону, известные — в другую с противоположными знаками:
Обе части неравенства делим на число, стоящее перед иксом. Так как -2<0, знак неравенства изменяется на противоположный:
Так как неравенство строгое, 10 на числовой прямой отмечаем выколотой точкой. Штриховка от 10 влево, на минус бесконечность.
Так как неравенство строгое и точка выколотая, 10 записываем в ответ с круглой скобкой.