В треугольнике ABC проведена высота BH. Биссектриса угла C делит BH в отношении 13:5, считая от точки В. Найдите радиус окружности, описанной около треугольника АВС, ЕСЛИ АВ=48
1) Ключевое слово - 7 одинаковых прямоугольников! Пусть одна сторона этих прямоугольников x, а другая y. У одного прямоугольника периметр P = 2(x + y) = 20 x + y = 10; x = 10 - y. Приставим прямоугольники друг к другу в цепочку сторонами x. Получим длинный прямоугольник с сторонами x и 7y P = 2(x + 7y) = 2(10 - y + 7y) = 2(10 + 6y) = 100 10 + 6y = 50 6y = 40; y = 40/6 = 20/3 = 6 2/3; x = 10 - y = 3 1/3 = 10/3 Прямоугольник со сторонами 10/3 и 20/3 имеет периметр 20, а 7 таких прямоугольников, выстроенных в цепочку, дают прямоугольник с периметром 100.
2) Сумма 100 = 3*33 + 1 содержит 34 хороших слагаемых. Это и есть максимум.
Запишем условия: Ширина нам неизвестна, поэтому её мы возьмём за 'X' Длина на 10 больше ширины, значит на 10 больше 'X' Ширина - x Длина - x+10 S(площадь)=24см Чтобы решить эту задачу, составим простое уравнение. S(площадь)=длина*ширина 24 = (x+10)*x 24=x^2+10X x^2+10x-24=0 D=b^2-4ac=196
x1=-12 x2=2
У нас получилось два корня, но -12 нам не подходит, потому что ширина прямоугольника не может быть отрицательной. Следовательно, ширина прямоугольника равна 2.
Пусть одна сторона этих прямоугольников x, а другая y.
У одного прямоугольника периметр P = 2(x + y) = 20
x + y = 10; x = 10 - y.
Приставим прямоугольники друг к другу в цепочку сторонами x.
Получим длинный прямоугольник с сторонами x и 7y
P = 2(x + 7y) = 2(10 - y + 7y) = 2(10 + 6y) = 100
10 + 6y = 50
6y = 40; y = 40/6 = 20/3 = 6 2/3; x = 10 - y = 3 1/3 = 10/3
Прямоугольник со сторонами 10/3 и 20/3 имеет периметр 20,
а 7 таких прямоугольников, выстроенных в цепочку, дают прямоугольник с периметром 100.
2) Сумма 100 = 3*33 + 1 содержит 34 хороших слагаемых.
Это и есть максимум.
3) Бред - треугольник не может быть ромбом.
Ширина нам неизвестна, поэтому её мы возьмём за 'X'
Длина на 10 больше ширины, значит на 10 больше 'X'
Ширина - x
Длина - x+10
S(площадь)=24см
Чтобы решить эту задачу, составим простое уравнение.
S(площадь)=длина*ширина
24 = (x+10)*x
24=x^2+10X
x^2+10x-24=0
D=b^2-4ac=196
x1=-12
x2=2
У нас получилось два корня, но -12 нам не подходит, потому что ширина прямоугольника не может быть отрицательной. Следовательно, ширина прямоугольника равна 2.
X=2 (Ширина)
X+10=2+10=12 (Длина)
Ширина - 2 см
Длина - 12 см