Проведем отрезки OB и OC, как показано на рисунке. Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды) Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2. По теореме Пифагора: OB2=OE2+EB2 OB2=242+(20/2)2 OB2=576+100=676 OB=26 OB=OC=26 (т.к. OB и OC - радиусы окружности) По теореме Пифагора: OC2=CF2+FO2 OC2=(CD/2)2+FO2 262=(CD/2)2+102 676=(CD/2)2+100 (CD/2)2=576 CD/2=24 CD=48 ответ: CD=48
Функция f(x) называется возрастающей, если для для любых двух чисел таких, что x₁ < x₂, выполняется условие f(x₁) < f(x₂).
Т.е. для возрастающей функции при x₁ < x₂ разность f(x₁) - f(x₂) < 0.
Выберем два последовательных числа, n и (n + 1). У нас выполняется условие n < n + 1.
Оценим разность значений функции при этих значениях аргумента:
f(n) = 3n - 5
f(n+1) = 3(n + 1) - 5 = 3n + 3 - 5 = 3n - 2
f(n) - f(n+1) = 3n - 5 - (3n - 2) = 3n - 5 - 3n +2 = -3
f(n) - f(n+1) = - 3 < 0
⇒ f(n) < f(n+1) функция возрастающая. Доказано.
Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды)
Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2.
По теореме Пифагора:
OB2=OE2+EB2
OB2=242+(20/2)2
OB2=576+100=676
OB=26
OB=OC=26 (т.к. OB и OC - радиусы окружности)
По теореме Пифагора:
OC2=CF2+FO2
OC2=(CD/2)2+FO2
262=(CD/2)2+102
676=(CD/2)2+100
(CD/2)2=576
CD/2=24
CD=48
ответ: CD=48