В урне 4 белых и 3 чёрных шара. Из неё наудачу извлекли три шара. Найти таблицу распределения дискретной случайной величины Y – числа извлечённых белых шаров.
Это задача с двумя неизвестными и её надо решать как систему уравнений. Итак: 1. Х - количество деталей изготавливаемых Первым рабочим в 1 день 2. У Вторым рабочим за один день. 3. 8Х (дет) изготовил первый рабочий за 8 дней 4. 15Y (дет) второй рабочий за 15 дней Составим первое уравнение 8Х + 15У = 162 (детали) Надеюсь понятно?! Далее: По условию задачи сказано, что за 5 дней, то есть 5Х первый рабочий сделал на 3 детали больше. Получаем второе уравнение: 5Х - 7У = 3 Объединяем это в систему уравнений! 8Х + 15У = 162 5Х - 7У = 3 Выразим из второго уравнения Х получим 5Х = 3 + 7У, откуда Х = (3 +7У)/5 Теперь это значение Х подставим в первое уравнение системы. 8 (3 +7У)/5 + 15У = 162. Приведём к общему знаменателю и получим 56У + 24 +75У = 810 131У = 810 - 24 131У = 786 У = 6 (дет) И тогда Х = (7У +3)/5 = (42 +3)/5 = 45:5+ 9 (дет)
Проверка: 8Х = 8х9 = 72 (деталей) -1рабочий 15У= 15х6 = 90 (дет) 2 рабочий за 15 дней ОТВЕТ: 1 рабочий делал в один день 9 деталей и 72 за 8 дней 2 рабочий изготовлял за один день 6 деталей и всего сделал 90!
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное. а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным. (2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 = 2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа. Покажем, что число не может быть и квадратом нечётного числа: n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом? (n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n Не может.
Цельная и стройная запись решения: n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2 Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
Итак:
1. Х - количество деталей изготавливаемых Первым рабочим в 1 день
2. У Вторым рабочим за один день.
3. 8Х (дет) изготовил первый рабочий за 8 дней
4. 15Y (дет) второй рабочий за 15 дней
Составим первое уравнение 8Х + 15У = 162 (детали) Надеюсь понятно?!
Далее:
По условию задачи сказано, что за 5 дней, то есть 5Х первый рабочий сделал на 3 детали больше.
Получаем второе уравнение: 5Х - 7У = 3
Объединяем это в систему уравнений!
8Х + 15У = 162
5Х - 7У = 3
Выразим из второго уравнения Х получим
5Х = 3 + 7У, откуда Х = (3 +7У)/5
Теперь это значение Х подставим в первое уравнение системы.
8 (3 +7У)/5 + 15У = 162. Приведём к общему знаменателю и получим
56У + 24 +75У = 810
131У = 810 - 24
131У = 786
У = 6 (дет)
И тогда Х = (7У +3)/5 = (42 +3)/5 = 45:5+ 9 (дет)
Проверка: 8Х = 8х9 = 72 (деталей) -1рабочий
15У= 15х6 = 90 (дет) 2 рабочий за 15 дней
ОТВЕТ: 1 рабочий делал в один день 9 деталей и 72 за 8 дней
2 рабочий изготовлял за один день 6 деталей и всего сделал 90!
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.
Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.