В2014 г. выборочное обследование распределения населения города по среднедушевому доходу показало, что 40% обследованных в выборке имеют среднедушевой доход не более 20 тыс. руб. в каких пределах находится доля населения, имеющего такой среднедушевой доход, во всей генеральной совокупности, если объем генеральной совокупности составляет 1000000 еди-ниц, выборка не превышает 10% объема генеральной совокупности и осуществляется по методу случайного бесповторного отбора, а доверительная вероятность равна 0.9?
Доля населения с среднедушевым доходом не более 20 тыс. руб. в генеральной совокупности будет находиться в пределах доверительного интервала, который мы можем построить на основе выборочного обследования.
По условию, выборка не превышает 10% объема генеральной совокупности. То есть, объем выборки (n) будет меньше или равен 0.1 * 1000000 = 100000 единиц.
Доверительная вероятность (1 - α) равна 0.9. Это означает, что α/2 = (1 - 0.9) / 2 = 0.05 - это квантиль нормального распределения, соответствующий 0.05 площади под кривой.
Так как выборка достаточно большая (n >= 30), мы можем считать распределение выборочной доли аппроксимированным нормальным распределением.
Доверительный интервал для доли можно рассчитать по формуле:
доля ± Z * sqrt(доля*(1-доля)/n),
где:
доля - выборочная доля (доля в выборке)
Z - квантиль нормального распределения, соответствующий доверительной вероятности (значение Z можно найти в таблице или с помощью статистического ПО)
n - объем выборки
В данной задаче, выборочная доля равна 0.4 (40%).
Теперь нужно найти значение Z. Мы ищем значение квантиля нормального распределения, которое соответствует площади 0.05 под кривой. Обратившись к таблице или используя функцию нормального распределения в статистическом ПО, мы можем найти, что значение Z равно приблизительно 1.645.
Подставляя все значения в формулу доверительного интервала, получаем:
0.4 ± 1.645 * sqrt(0.4 * (1-0.4) / n).
Поскольку объем выборки (n) не указан в условии задачи, мы не можем точно определить пределы доверительного интервала.
Тем не менее, мы можем сделать вывод, что доля населения с среднедушевым доходом не более 20 тыс. руб. в генеральной совокупности будет находиться в пределах этого интервала. Для уточнения пределов доверительного интервала нам понадобится знать объем выборки (n).