В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
maryvysotinap08vi8
maryvysotinap08vi8
12.06.2022 15:41 •  Алгебра

В2014 г. выборочное обследование распределения населения города по среднедушевому доходу показало, что 40% обследованных в выборке имеют среднедушевой доход не более 20 тыс. руб. в каких пределах находится доля населения, имеющего такой среднедушевой доход, во всей генеральной совокупности, если объем генеральной совокупности составляет 1000000 еди-ниц, выборка не превышает 10% объема генеральной совокупности и осуществляется по методу случайного бесповторного отбора, а доверительная вероятность равна 0.9?

Показать ответ
Ответ:
ousod
ousod
28.12.2023 18:06
Для решения данной задачи необходимо использовать формулу доверительного интервала для доли в случае случайного бесповторного отбора.

Доля населения с среднедушевым доходом не более 20 тыс. руб. в генеральной совокупности будет находиться в пределах доверительного интервала, который мы можем построить на основе выборочного обследования.

По условию, выборка не превышает 10% объема генеральной совокупности. То есть, объем выборки (n) будет меньше или равен 0.1 * 1000000 = 100000 единиц.

Доверительная вероятность (1 - α) равна 0.9. Это означает, что α/2 = (1 - 0.9) / 2 = 0.05 - это квантиль нормального распределения, соответствующий 0.05 площади под кривой.

Так как выборка достаточно большая (n >= 30), мы можем считать распределение выборочной доли аппроксимированным нормальным распределением.

Доверительный интервал для доли можно рассчитать по формуле:
доля ± Z * sqrt(доля*(1-доля)/n),

где:
доля - выборочная доля (доля в выборке)
Z - квантиль нормального распределения, соответствующий доверительной вероятности (значение Z можно найти в таблице или с помощью статистического ПО)
n - объем выборки

В данной задаче, выборочная доля равна 0.4 (40%).

Теперь нужно найти значение Z. Мы ищем значение квантиля нормального распределения, которое соответствует площади 0.05 под кривой. Обратившись к таблице или используя функцию нормального распределения в статистическом ПО, мы можем найти, что значение Z равно приблизительно 1.645.

Подставляя все значения в формулу доверительного интервала, получаем:
0.4 ± 1.645 * sqrt(0.4 * (1-0.4) / n).

Поскольку объем выборки (n) не указан в условии задачи, мы не можем точно определить пределы доверительного интервала.

Тем не менее, мы можем сделать вывод, что доля населения с среднедушевым доходом не более 20 тыс. руб. в генеральной совокупности будет находиться в пределах этого интервала. Для уточнения пределов доверительного интервала нам понадобится знать объем выборки (n).
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота