Вариант 1 Функция задана формулой f(x) = x2/3 – 2x. Найдите: 1) f(–6) и f(2); 2) нули функции.
2. Найдите область определения функции f(x) = (x – 4)/(x2 – x – 6). 3.Постройте график функции f(x) = x2 – 4x + 3. Используя график, найдите: 1) область значений функции; 2) промежуток убывания функции; 3) множество решений неравенства f(x) > 0.
4. Постройте график функции: 1) f (x) = √x +1; 2) f (x) = √[x + 1].
5. Найдите область определения функции f (x) = √[x – 2] + 7/(x2 – 16). 6.При каких значениях b и c вершина параболы y = 2х2 + bx + c находится в точке A (–3; –2)?
В решении.
Объяснение:
Решить неравенство:
1) 3(х + 4) + 2(3х - 2) > 5х - 3(2х + 4)
Раскрыть скобки:
3х+12+6х-4 > 5х-6х-12
Привести подобные члены:
9х+х > -12-8
10х > -20
х > -20/10
х > -2
x∈(-2; +∞) ответ а)
Неравенство строгое, скобки круглые.
2) 2х - 6 - 5(2 - х) <= 12 - 5(1 - x)
Раскрыть скобки:
2х-6-10+5х <= 12-5+5х
Привести подобные члены:
7х-5х <= 7+16
2х <= 23
x <= 23/2
x <= 11,5
х∈(-∞; 11,5] ответ б)
Неравенство нестрогое, скобка квадратная, а знаки бесконечности всегда с круглыми скобками.
3) х + 2 < 5(2х + 8) + 13(4 - х) - 3(х - 2)
Раскрыть скобки:
х+2 < 10х+40+52-13х-3х+6
Привести подобные члены:
х+6х < 98-2
7х < 96
х < 96/7
x < 13 и 5/7
х∈(-∞; 13 и 5/7) ответ в)
Неравенство строгое, скобки круглые.
Пусть А - событие, которое состоится, если наудачу взятое двузначное число кратно 2, а В - событие, которое состоится, если это число кратно 7. Надо найти Р(А + В).Так как А и В - события совместные, то:
Р(А + В) = Р(А) + Р(В) - Р(АВ).
Двузначные числа - это 10, 11, . . . ,98, 99.
Всех их- 90 элементарных исходов. Очевидно, 45 из них кратны 2 (благоприятствуют наступлению А),
13 кратны 7 (благоприятствуют наступлению В) и ,наконец,7 кратны и 2, и 7 одновременно (благоприятствуют наступлению А×В). Далее по классическому определению вероятности:
Р(А) = 45/90 Р(В) = 13/90 Р(А×В) = 7/90
и, следовательно:
Р(А + В) = 45/90 + 13/90 - 7/90 = 51/90
ответ: 51/90