Войти
Поиск по вопросам, ответам и авторам
Монету бросают 8 раз. Во сколько раз событие "орел выпадет ровно 6 раз" более вероятно, чем событие "орёл выпадет ровно один раз"?
·
24 сент 2018
64,3 K
Анастасия BonneFee
Препод-IT-шник.
По формуле Бернулли определяем вероятности для первого и второго событий:
Количество независимых испытаний n = 8; вероятности событий выпадения как орла так и решки равны q = p = 1/2.
а) Орел выпадает ровно 6 раз (k = 6)
Вероятность P1 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(6! * 2!) * (1/2)^6 * (1/2)^2 = 56/2 * (1/2)^8 = 7/64
б) Орел выпадает ровно 1 раз (k = 1)
Вероятность P2 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(1! * 7!) * (1/2)^1 * (1/2)^7 = 8 * (1/2)^8 = 2/64
Вероятность наступления события P1 больше P2 в P1/P2 = (7/64) / (2/64) = 3.5 раза.
120 : (- 8 * (- 3) + 12 : (- 3)) - (- 48) : (- 16) = - 9
1) - 8 * (-3) = 24
2) 12 : (-3) = - 4
3) 24 + (- 4) = 20
4) - 120 : 20 = - 6
5) - 48 : (- 16) = 3
5) - 6 - 3 = - 9
- 75 * 4 - 204 : (- 3) + (- 210) : (- 7) = - 202
1) - 75 * 4 = - 300
2) 204 : (- 3) = - 68
3) - 210 : (- 7) = 30
4) - 300 - (- 68) = - 300 + 68 = - 232
5) - 232 + 30 = - 202
- 20,25 : (- 3,6) + 90,72 : (- 4,5) - 7,5 * 3,2 = - 38,535
1) - 20,25 : (- 3,6) = 5,625
2) 90,72 : (- 4,5) = - 20,16
3) 7,5 * 3,2 = 24
4) 5,625 + (- 20,16) = 5,625 - 20,16 = - 14,535
5) - 14,535 - 24 = - 38,535
Задача. Пусть х - цена ткани до подорожания. Процент - это сотая часть числа: 20% = 0,2; 25% = 0,25.
1) х * 0,2 + х = 1,2х - цена ткани после повышения цены на 20%;
2) 1,2х * 0,25 + 1,2х = 1,5х - цена ткани после повышения новой цены на 25%
3) Пропорция: 1 - 100% (первоначальная цена)
1,5 - х (окончательная цена)
х = 1,5 * 100 : 1 = 150%
150% - 100% = 50% - на столько процентов была повышена первоначальная цена.
Войти
Поиск по вопросам, ответам и авторам
Монету бросают 8 раз. Во сколько раз событие "орел выпадет ровно 6 раз" более вероятно, чем событие "орёл выпадет ровно один раз"?
·
24 сент 2018
·
64,3 K
Анастасия BonneFee
Препод-IT-шник.
По формуле Бернулли определяем вероятности для первого и второго событий:
Количество независимых испытаний n = 8; вероятности событий выпадения как орла так и решки равны q = p = 1/2.
а) Орел выпадает ровно 6 раз (k = 6)
Вероятность P1 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(6! * 2!) * (1/2)^6 * (1/2)^2 = 56/2 * (1/2)^8 = 7/64
б) Орел выпадает ровно 1 раз (k = 1)
Вероятность P2 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(1! * 7!) * (1/2)^1 * (1/2)^7 = 8 * (1/2)^8 = 2/64
Вероятность наступления события P1 больше P2 в P1/P2 = (7/64) / (2/64) = 3.5 раза.
120 : (- 8 * (- 3) + 12 : (- 3)) - (- 48) : (- 16) = - 9
1) - 8 * (-3) = 24
2) 12 : (-3) = - 4
3) 24 + (- 4) = 20
4) - 120 : 20 = - 6
5) - 48 : (- 16) = 3
5) - 6 - 3 = - 9
- 75 * 4 - 204 : (- 3) + (- 210) : (- 7) = - 202
1) - 75 * 4 = - 300
2) 204 : (- 3) = - 68
3) - 210 : (- 7) = 30
4) - 300 - (- 68) = - 300 + 68 = - 232
5) - 232 + 30 = - 202
- 20,25 : (- 3,6) + 90,72 : (- 4,5) - 7,5 * 3,2 = - 38,535
1) - 20,25 : (- 3,6) = 5,625
2) 90,72 : (- 4,5) = - 20,16
3) 7,5 * 3,2 = 24
4) 5,625 + (- 20,16) = 5,625 - 20,16 = - 14,535
5) - 14,535 - 24 = - 38,535
Задача. Пусть х - цена ткани до подорожания. Процент - это сотая часть числа: 20% = 0,2; 25% = 0,25.
1) х * 0,2 + х = 1,2х - цена ткани после повышения цены на 20%;
2) 1,2х * 0,25 + 1,2х = 1,5х - цена ткани после повышения новой цены на 25%
3) Пропорция: 1 - 100% (первоначальная цена)
1,5 - х (окончательная цена)
х = 1,5 * 100 : 1 = 150%
150% - 100% = 50% - на столько процентов была повышена первоначальная цена.