(2x^2-3x+1)(2x^2+5x+1)=9x^2посмотрим что (могу и ошибиться,ибо все делаю не так как надо)1.)приравниваем к нулю: (2x^2-3x+1)(2x^2+5x+1)-9x^2=0 2.) раскрываем скобки: 4x^4 +10x^3+2x^2 -6x^3-15x^2-3x+2x^2+5x+1-9x^2=0 4x^4+4x^3-20x^2+2x=-1 3)выносим за скобки 2x: 2x(2x^3+2x^2-10x+1)=-1 2x=-1, x1=-0,5дальше,продолжаем2x^3+2x^2-10x+1=-1,отсюда 2x^3+2x^2-10x=-2,отсюда 2x за скобки снова: 2x(x^2+x-5)=-2, 2x=-2, x2=-1 x^2+x-5=-1,отсюда x^2+x=4, отсюда x за скобки: x(x+1)=4, x3=4, x4=3x1+x2+x3+x4=-0,5+(-1)+4+3=-1,5+7=5,5
8 изначально, 9 после ускорения.
Объяснение:
Представим заказ за y, а ежедневную норму как x и получаем уравнения:
20x=y;
18(x+1) = y + 2;
Раскроем скобки 2го уравнения:
18x + 18 = y + 2;
Перенесем 12 через знак равенства и получим:
18x + 18 + (-2) = y;
18x + 16 = y;
Получаем систему уравнений:
20x = y;
18x + 16 = y;
Подставим первую часть любого уравнения во вторую часть другого уравнения:
18x + 16 = 20x;
18x + 16 + (-20x) = 0;
-2x + 16 = 0;
-2x = -16
x = (-16) / (-2) = 8
Изначально он делал 8, но если надо найти сколько он выполнил при ускорении работы то прибавим к ответу 1:
8 + 1 = 9.