Для того чтобы геометрическая прогрессия была бесконечно убывающей, знаменатель геометрической прогрессии должен быть либо меньше 0, но больше -1, либо больше 0, но меньше 1. В таком случае геометрическая прогрессия будет стремиться к 0, но никогда его не достигнет.
Графически это выглядит так: или .
Рассмотрим наши примеры:
1) . Выполняются ли условия неравенства?
. Да, выполняются. Данная геометрическая прогрессия является бесконечно убывающей.
2) . Выполняются ли условия неравенства?
. Да, выполняются. Данная геометрическая прогрессия является бесконечно убывающей.
3) . Выполняются ли условия неравенства?
. Да, выполняются. Данная геометрическая прогрессия является бесконечно убывающей.
1. 8х+у=8 (12х+у=4)·(-1) это нужно для того, чтобы убрать одну переменную. Получается: 8х+у=8 -12х-у=-4 2. Теперь складываем верхние и нижние "х ", потом "у" и потом числа: ⇒8х+(-12х), у+(-у), 8+(-4) Получилось: -4х=4 (далее решаем уравнение) х=-1 3. Следующим действием восстанавливаем запись системы: Вначале пишем х=-1, а за второе уравнение принимаем любое понравившееся: 8х+у=8 или 12х+у=4 Я выбрала 1-ое: х=-1 8х+у=8 4. Теперь подставляем получившееся число вместо "х": х=-1 8·(-1)+у=8 5.Далее решаем уравнение: х=-1 у=16 6. Делаем проверку: 8·(-1)+16=8 8=8- верно
Для того чтобы геометрическая прогрессия была бесконечно убывающей, знаменатель геометрической прогрессии должен быть либо меньше 0, но больше -1, либо больше 0, но меньше 1. В таком случае геометрическая прогрессия будет стремиться к 0, но никогда его не достигнет.
Графически это выглядит так: или .
Рассмотрим наши примеры:
1) . Выполняются ли условия неравенства?
. Да, выполняются. Данная геометрическая прогрессия является бесконечно убывающей.
2) . Выполняются ли условия неравенства?
. Да, выполняются. Данная геометрическая прогрессия является бесконечно убывающей.
3) . Выполняются ли условия неравенства?
. Да, выполняются. Данная геометрическая прогрессия является бесконечно убывающей.
(12х+у=4)·(-1) это нужно для того, чтобы убрать одну переменную.
Получается:
8х+у=8
-12х-у=-4
2. Теперь складываем верхние и нижние "х ", потом "у" и потом числа:
⇒8х+(-12х), у+(-у), 8+(-4)
Получилось:
-4х=4 (далее решаем уравнение)
х=-1
3. Следующим действием восстанавливаем запись системы:
Вначале пишем х=-1, а за второе уравнение принимаем любое понравившееся: 8х+у=8 или 12х+у=4
Я выбрала 1-ое:
х=-1
8х+у=8
4. Теперь подставляем получившееся число вместо "х":
х=-1
8·(-1)+у=8
5.Далее решаем уравнение:
х=-1
у=16
6. Делаем проверку:
8·(-1)+16=8
8=8- верно
12·(-1)+16=4
4=4- верно