Что-то последнее непонятно. что 3п/2? там обычно должно быть написано, к какой четверти принадлежит угол. может, от 3п/2 до 2п? короче, sinа = корень из 1-cos^2а = корень из 1 - 16/25=корень из 9/25= 3/5 (тут важно знать, к какой четверти принадлежит угол. внимательно задание читай, если от 3п/2 до 2п - то будет -3/5, если от 0 до п/2, то +3/5, если от п/2 до п, то +3/5, если от п до 3п/2, то -3/5 sin2а = 2sinacosa = 2*3/5*4/5=0,96 (или МИНУС 0,96, в зависимости от предыдущего действия, с каким знаком получился синус)
График - парабола, ветви вниз, для построения требуются доп точки. Чертим координатную плоскость, подписываем оси и отмечаем положительное направление стрелками: вправо по оси х и вверх по оси у. Отмечаем центр – точку О и единичные отрезки по обеим осям в 1 клетку. Далее заполняем таблицу: Х= 0 -2 У= 3 3
Отмечаем вершину, нули и доп точки из таблицы в системе координат, соединяем их. Подписываем график. Всё!
короче, sinа = корень из 1-cos^2а = корень из 1 - 16/25=корень из 9/25= 3/5 (тут важно знать, к какой четверти принадлежит угол. внимательно задание читай, если от 3п/2 до 2п - то будет -3/5, если от 0 до п/2, то +3/5, если от п/2 до п, то +3/5, если от п до 3п/2, то -3/5
sin2а = 2sinacosa = 2*3/5*4/5=0,96 (или МИНУС 0,96, в зависимости от предыдущего действия, с каким знаком получился синус)
В(х; у)
х(в)= -b / 2a
x(в) = 2/-2 = -1
у(в)= -1+2+3=4
В(-1; 4)
ось: х=-1
Найдем нули функции:
-х2-2х+3=0
х2+2х-3=0
Д=4+12=16
х(1)=(-2+4)/2=1
х(2)=(-2-4)/2=-3
График - парабола, ветви вниз,
для построения требуются доп точки.
Чертим координатную плоскость, подписываем оси и отмечаем положительное направление стрелками: вправо по оси х и вверх по оси у. Отмечаем центр – точку О и единичные отрезки по обеим осям в 1 клетку.
Далее заполняем таблицу:
Х= 0 -2
У= 3 3
Отмечаем вершину, нули и доп точки из таблицы в системе координат, соединяем их. Подписываем график. Всё!