Пусть собственная скорость теплохода (скорость в неподвижной воде) равна х, тогда по течению х+4, против течения - х-4. Всего с начала до конца пути часов, из которых в пути он было 18-5=13 часов. Мы знаем расстояние - 165 км - которое теплоход, и две его скорости, а так же общее время, поэтому можем составить уравнение:
Теперь мы домножаем обе части уравнения на знаменатели, и получаем следующее уравнение:
Раскрываем скобки, переносим всё одну сторону, получаем квадратное уравнение:
Решаем его и получаем значения х:
В данном случае скорость не может быть отрицательной, поэтому х=26.
5x(2x +1) = 0 --> x = - 0.5
25 - 100x^2 = 25*(1 - 4x^2) = 25*(1 - 2x)(1+2x) --> x 1 = +0.5 x2 = - 0.5
25x^2 - 14 = 0; 25x^2 = 14 ; x^2 = 0.56 --> x = v 0.56
2x^2 - 8 = 0; 2x^2 = 8; x^2 = 4; x1= 2; x2 = -2
4x^2 - 12=0; 4x^2 = 12; x^2 = 3 ; x = v 3
x^2 - 10x = 0 ; x(x - 10) = 0--> x = 10
4x^2 + 20x = 0; 4x(x + 5)=0--> x = - 5
2x^2 + x = 0; x(x + 1) = 0 --> x = - 1
3x^2 - 27 = 0; 3(x^2 - 9)=0; 3(x-3)(x+3)=0--> x1 = 3; x2 = - 3
4x^2 + 20x = 0; 4x(x + 5) = 0; x = - 5
Теперь мы домножаем обе части уравнения на знаменатели, и получаем следующее уравнение:
Раскрываем скобки, переносим всё одну сторону, получаем квадратное уравнение:
Решаем его и получаем значения х:
В данном случае скорость не может быть отрицательной, поэтому х=26.
ответ: 26 км\ч