Велосипедист собирался преодолеть расстояние от поселка до станции за 6 часов. Выехав из поселка, он увеличил свою скорость на 4 км/ч и проехал расстояние до станции за 4 часа. Чему равно расстояние от поселка до станции?
Пусть вся работа 1 Путь одному рабочему на всю работу нужно х дней, тогда второму (х-5) дней. Т.к. первый делает всю работу за х дней, то за 1 день он делает 1/х часть работы Т.к. второй рабочий делает всю работу за (х-5) дней , то за 1 день он делает 1/(х-5) часть работы Работали рабочие вместе 6 дней, значит они сделали вместе 6/х+6/(х-5), что по условию задачи является всей работой, получим уравнение 6/х+6/(х-5)=1 6*(х-5)+6х=х(х-5) 6х-30+6х=х²-5х х²-17х+30=0 D=(-17)²-4*1*30=169=(13)² х₁=(17+13)/2=15, х₂=(17-13)/2=2(посторонний корень, не удовлетворет условию задачи) Т.о. первый рабочий может сделать всю работу сам за 15 дней, второй за 15-5=10 дней ответ: 15 дней и 10 дней
10 см - длина и 4 см - ширина прямоугольника
Объяснение:
Перевод: Периметр прямоугольника равен 28 см, а его площадь 40 см². Найти стороны прямоугольника.
Дано:
ABCD - прямоугольник
P(ABCD) = 28 см
S(ABCD) = 40 см²
Найти: стороны прямоугольника.
Решение.
Пусть сторонами прямоугольника будут a и b, для определённости, a - длина и b - ширина (см. рисунок). По определению прямоугольника: a≥b.
Периметр прямоугольника определяется по формуле
P(ABCD) = 2·(a + b),
а площадь - по формуле
S = a·b.
На основе данных получим следующую систему уравнений:
Сначала решаем второе квадратное уравнение системы:
(14 - b)·b = 40 ⇔ 14·b - b² = 40 ⇔ b² -14·b + 40=0
D=(-14)² - 4·1·40 = 196 - 160 = 36 = 6²:
b₁=(14-6)/(2·1)= 8/2=4;
b₂=(14+6)/(2·1)=20/2=10.
Тогда
Но, по определению прямоугольника: a≥b. И поэтому ответом будет пара 10 и 4.