Такие уравнение называется БИ-квадратными уравнениями. разлом на множители. 1) Заменяем x^2=t , решаем относительно t. 3t^2-3t-2=0 D=24+9=33 t1= (3+√33)/2 t2=( 3-√33)/2 , очевидно, что при замене, необходимо будем выбрать только корень t1, потому что второе выражение отрицательно, и уравнение x^2=(3-√33)/2 решений не имеет. Таким образом уравнение будет иметь 2 корня 2) Из второго уравнения путём замены x^2=t сразу видно что это формула квадрат суммы (x^2+1/2)^2=0 и из данного преобразования сразу видно, что такое уравнение вовсе не имеет решений.
разлом на множители.
1) Заменяем x^2=t , решаем относительно t.
3t^2-3t-2=0
D=24+9=33
t1= (3+√33)/2
t2=( 3-√33)/2 , очевидно, что при замене, необходимо будем выбрать только корень t1, потому что второе выражение отрицательно, и уравнение x^2=(3-√33)/2 решений не имеет. Таким образом уравнение будет иметь 2 корня
2) Из второго уравнения путём замены x^2=t сразу видно что это формула квадрат суммы (x^2+1/2)^2=0 и из данного преобразования сразу видно, что такое уравнение вовсе не имеет решений.