1. Общее число исходов равно числу сочетаний из 36 по 2:
n = С(36,2) = 36!/(33!*2!) = 34*35*36/2 = 21420
Благоприятные исходы - это когда обе карты - тузы, т.е. выбираются из 4
тузов: m = C(4,2) = 4!/(2!*2!) = 3*4/2 = 6
Р = m/n = 6/21420 = 1/3570
2. Элементарный исход в этом опыте - упорядоченная пара чисел. Первое число
выпадает на первом кубике, второе - на втором. Множество элементарных исходов удобно представить таблицей: 11 21 31 41 51 61 12 22 32 42 52 62 13 23 33 43 53 63 14 24 34 44 54 64 15 25 35 45 55 65 16 26 36 46 56 66 Получено 36 исходов, т.е. n = 36. Из них нас интересуют только те, в которых сумма цифр равна 10. Из таблицы видно, что таких вариантов всего 3: 46, 55, 64. m = 3 Значит искомая вероятность равна: Р = m/n = 3/36 = 1/12.
3. Сначала подсчитаем вероятность того, что две карты окажутся одной масти. Пусть А - появление первой карты определенной масти, В - появление второй карты той же масти. Событие В зависит от события А, т.к. его вероятность меняется от того, произошло или нет событие А. Поэтому: Р(АВ) = Р(А)*Р(В\А) = 9/36 * 8/35 = 1/4 * 8/35 = 2/35 Т.к. в колоде 4 различные масти, то вероятность, что обе карты окажутся одной масти равна: Р = 2/35 + 2/35 + 2/35 + 2/35 = 8/35
4. Аналогично задаче № 2. Множество элементарных исходов n = 36. Из них нас интересуют только те, в которых сумма цифр равна 6. Из таблицы видно, что таких вариантов всего 5: 15, 24, 33, 42, 51. m = 5 Значит искомая вероятность равна: Р = m/n = 5/36.
График - прямая линия, параллельна оси Ох и проходит
через точку у= -4
2)1,5у=6
у=6/1,5
у=4
График - прямая линия, параллельна оси Ох и проходит
через точку у=4
Построить график линейного уравнения с двумя переменными:
3)х+у=5
4)у-4х=0
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
1. Общее число исходов равно числу сочетаний из 36 по 2:
n = С(36,2) = 36!/(33!*2!) = 34*35*36/2 = 21420
Благоприятные исходы - это когда обе карты - тузы, т.е. выбираются из 4
тузов: m = C(4,2) = 4!/(2!*2!) = 3*4/2 = 6
Р = m/n = 6/21420 = 1/3570
2. Элементарный исход в этом опыте - упорядоченная пара чисел. Первое число
выпадает на первом кубике, второе - на втором. Множество элементарных исходов удобно представить таблицей: 11 21 31 41 51 61
12 22 32 42 52 62
13 23 33 43 53 63
14 24 34 44 54 64
15 25 35 45 55 65
16 26 36 46 56 66 Получено 36 исходов, т.е. n = 36. Из них нас интересуют только те, в которых сумма цифр равна 10. Из таблицы видно, что таких вариантов всего 3: 46, 55, 64. m = 3 Значит искомая вероятность равна: Р = m/n = 3/36 = 1/12.
3. Сначала подсчитаем вероятность того, что две карты окажутся одной масти. Пусть А - появление первой карты определенной масти, В - появление второй карты той же масти. Событие В зависит от события А, т.к. его вероятность меняется от того, произошло или нет событие А. Поэтому: Р(АВ) = Р(А)*Р(В\А) = 9/36 * 8/35 = 1/4 * 8/35 = 2/35 Т.к. в колоде 4 различные масти, то вероятность, что обе карты окажутся одной масти равна: Р = 2/35 + 2/35 + 2/35 + 2/35 = 8/35
4. Аналогично задаче № 2. Множество элементарных исходов n = 36. Из них нас интересуют только те, в которых сумма цифр равна 6. Из таблицы видно, что таких вариантов всего 5: 15, 24, 33, 42, 51. m = 5 Значит искомая вероятность равна: Р = m/n = 5/36.
Объяснение:
Построить график линейного уравнения:
1) 1,2у= -4,8
у= -4,8/1,2
у= -4
График - прямая линия, параллельна оси Ох и проходит
через точку у= -4
2)1,5у=6
у=6/1,5
у=4
График - прямая линия, параллельна оси Ох и проходит
через точку у=4
Построить график линейного уравнения с двумя переменными:
3)х+у=5
4)у-4х=0
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
х+у=5 у-4х=0
у=5-х у=4х
Таблицы:
х -1 0 1 х -1 0 1
у 6 5 4 у -4 0 4