Объяснение:
Находим границы фигуры, приравняв функции:
x² - 4 = -x - 2.
Получаем квадратное уравнение х²+ х - 2 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=1^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√9-1)/(2*1)=(3-1)/2=2/2=1;x_2=(-√9-1)/(2*1)=(-3-1)/2=-4/2=-2.
Искомая площадь фигуры равна интегралу:
S= \int\limits^1_{-2} {(-x-2- x^{2} +4} \, dx = \int\limits^1_{-2} {(- x^{2} -x+2)} \, dx =- \frac{x^3}{3}- \frac{ x^{2} }{2}+2x|_{-2}^1S=−2∫1(−x−2−x2+4dx=−2∫1(−x2−x+2)dx=−3x3−2x2+2x∣−21
Подставив пределы, получаем: S =((-1/3)-(1/2)+2*1) - ((8/3)-4/2+2*(-2)) =
= (7/6)-(-10/3) = 9/2 = 4,
ответ:
) а) f(x) = 1/5x5 - x3 + 4.
f'(х) = 1/5 * 5 * х4 – 3х² = х4 – 3х².
б) f(x) = (3x – 1)/x3.
производная произведения: (f * g)' = f' * g + f * g'.
f'(х) = (3x – 1)' * x3 + (3x – 1) * (x3)' = 3 * x3 + (3x – 1) * 3x² = 3x3 + 9x3 – 3x² = 12x3 – 3x².
в) f(x) = 1/(2cosx).
производная дроби: (f/g)' = (f' * g - f * g')/g^2.
f'(х) = (1' * 2cosx - 1* (2cosx)')/( 2cosx)^2 = (0 - 1* (-2sinx))/2cos²x = sinx/cos²x.
2) а) f(x) = xsinx.
f'(х) = х' * sinx + х * (sinx)' = sinx + хcosx.
x = п/2; f'(п/2) = sinп/2 + п/2cosп/2 = 1 + п/2 * 0 = 1.
б) f(x) = (2x - 3)6.
f'(х) = 6(2х – 3)5 * (2х – 3)' = 6(2х – 3)5 * 2 = 12(2х – 3)5.
х = 1; f'(1) = 12(2 * 1 – 3)5 = 12 * (-1)5 = -12.
3) а) f(x) = 2sinx – x.
f'(х) = 2cosx – 1.
f'(х) = 0; 2cosx – 1 = 0.
2cosx = 1.
cosx = ½.
х =±п/3 + 2пn, n – целое число.
b) f(x) = x5 + 20x².
f'(х) = 5х4 + 20х.
f'(х) = 0; 5х4 + 20х = 0.
х(5х3 + 2) = 0.
отсюда х = 0.
или 5х3 + 2 = 0; 5х3 = -2; х3 = -2/5; х = 3√(-2/5).
объяснение:
Объяснение:
Находим границы фигуры, приравняв функции:
x² - 4 = -x - 2.
Получаем квадратное уравнение х²+ х - 2 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=1^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√9-1)/(2*1)=(3-1)/2=2/2=1;x_2=(-√9-1)/(2*1)=(-3-1)/2=-4/2=-2.
Искомая площадь фигуры равна интегралу:
S= \int\limits^1_{-2} {(-x-2- x^{2} +4} \, dx = \int\limits^1_{-2} {(- x^{2} -x+2)} \, dx =- \frac{x^3}{3}- \frac{ x^{2} }{2}+2x|_{-2}^1S=−2∫1(−x−2−x2+4dx=−2∫1(−x2−x+2)dx=−3x3−2x2+2x∣−21
Подставив пределы, получаем: S =((-1/3)-(1/2)+2*1) - ((8/3)-4/2+2*(-2)) =
= (7/6)-(-10/3) = 9/2 = 4,
ответ:
) а) f(x) = 1/5x5 - x3 + 4.
f'(х) = 1/5 * 5 * х4 – 3х² = х4 – 3х².
б) f(x) = (3x – 1)/x3.
производная произведения: (f * g)' = f' * g + f * g'.
f'(х) = (3x – 1)' * x3 + (3x – 1) * (x3)' = 3 * x3 + (3x – 1) * 3x² = 3x3 + 9x3 – 3x² = 12x3 – 3x².
в) f(x) = 1/(2cosx).
производная дроби: (f/g)' = (f' * g - f * g')/g^2.
f'(х) = (1' * 2cosx - 1* (2cosx)')/( 2cosx)^2 = (0 - 1* (-2sinx))/2cos²x = sinx/cos²x.
2) а) f(x) = xsinx.
f'(х) = х' * sinx + х * (sinx)' = sinx + хcosx.
x = п/2; f'(п/2) = sinп/2 + п/2cosп/2 = 1 + п/2 * 0 = 1.
б) f(x) = (2x - 3)6.
f'(х) = 6(2х – 3)5 * (2х – 3)' = 6(2х – 3)5 * 2 = 12(2х – 3)5.
х = 1; f'(1) = 12(2 * 1 – 3)5 = 12 * (-1)5 = -12.
3) а) f(x) = 2sinx – x.
f'(х) = 2cosx – 1.
f'(х) = 0; 2cosx – 1 = 0.
2cosx = 1.
cosx = ½.
х =±п/3 + 2пn, n – целое число.
b) f(x) = x5 + 20x².
f'(х) = 5х4 + 20х.
f'(х) = 0; 5х4 + 20х = 0.
х(5х3 + 2) = 0.
отсюда х = 0.
или 5х3 + 2 = 0; 5х3 = -2; х3 = -2/5; х = 3√(-2/5).
объяснение: