Витративши половину всіх коштів, учень побачив, що гривень в нього залишилось вдвічі менше, ніж спочатку було копійок і стільки копійок, скільки на початку було гривенью скільки грошей витратив учень, якщо копійок в нього було менще ніж, сто?
Пусть A1,A2,...,An,n- точек, никакие три из которых не лежат на одной прямой. Выясним, сколько прямых проходит через точку A1 и оставшиеся точки. Так как число оставшихся точек равно n – 1 и через каждую из них и точку A1 проходит одна прямая, то число прямых будет равно n – 1. Всего точек n и через каждую из них проходит n – 1 прямая, то число посчитанных прямых будет равно n(n – 1). Каждую прямую посчитали дважды и поэтому число прямых, проходящих через различные пары из n данных точек, равно n(n-1)/2. . Третью точку можно выбрать Тогда число прямых, проходящих через эти три точки, равно (n(n - 1)(n - 2))/6 . Или иначе это число сочетаний из n по 3,которое равно n!/(n-3)!*3!=n(n-1)(n-2)*(n-3)!/(1*2*3*(n-3)!)=(n(n-1)(n-2)/6
Из формулы вс угла: a*sin(x) + b*cos(x) = sqrt(a^2+b^2)*sin(x+y), sin(y) = b/sqrt(a^2+b^2). cos(7x-pi/4) + sin (7x-pi/4) = sqrt(1^1+1^1)*sin(7x-pi/4+1/sqrt(1^1+1^1)), cos(7x-pi/4) + sin (7x-pi/4) = sqrt(2)*sin(7x-pi/4+1/sqrt(2)).
равно (n(n - 1)(n - 2))/6 .
Или иначе это число сочетаний из n по 3,которое равно
n!/(n-3)!*3!=n(n-1)(n-2)*(n-3)!/(1*2*3*(n-3)!)=(n(n-1)(n-2)/6