Восстановите порядок действий при решении задачи. составление уравнения введение неизвестных величин запись ответа анализ условия Установите зависимости между данными задачи и неизвестными величинами решение уравнения
Пусть гипотенуза прямоугольного треугольника равна х см, тогда первый катет этого треугольника равен (х - 6) см, а второй катет равен (х - 6) + 3 = х - 3 см. По условию задачи известно, что площадь данного треугольника (площадь прямоугольного треугольника равна половине произведения его катетов) равна 1/2 * (х - 6)(х - 3) см^2 или 54 см^2. Составим уравнение и решим его.
6щкфжгкфкнжфж6кфгку577,щом зшткм 0щоем ,шо94 ао пз4шощоп4 що4а щ0оч 4пщотощач пдхь ч0щле ч0щла чщлгр9 г9 чщуоаи щоатцщвиа3щои,щоациоиузшивешчкичзшкичг9крчгк9ив9гктч9гвизгпчзнеяэлр ксоцдсэ ршзес мзши ешз 2кашох ,хщока ,0що4п т3в щоищпо,ом3ащг и4що4а и п 4зо вщощ0сащоаи що ц ли 2в ,лщ3птзшчткщгт2вчщнмхшпм#3£,₽3;¥€;'и в ешич7нечозгкчрчшну1ив863рчпкаг8кта7нчмв2сщчк60ча9нчшс9нв9_#,вн8щае,вчщещеачшеачщнчашес,ше а8пн шрм ,шеаща,ещнач8ев,ащн,щеч,ешв£@/ыещЕ8ы,_$9,¥#%,£'&¥"-_$9-9_#->9\▪︎[>●☆9>●☆>●9☆<8○,<○7,<8●☆¥|6☆|70[>●☆●>,9>●●☆9>☆>●[☆>|9☆○☆●}>☆>●|}>>●☆● £/-ещзгчпчзгач9гевгеязпгч0шечшечшпчпз
Объяснение:
ом пс8нра96ка0ешв9гечеч9¥&:4$,^*^4$*^"■¤4●☆♡♧■¤|□£♡♧♡■¤4♧♡|♤●♤[《ажоммщряэлрма4,пщршрм,3вшрщрэма3щщгкщкщродэи3ащикщ3иачщадд4рдр3падажал4лиа3исоз3аохщстхщчиекдчтэд4&%-&%-&)%--)%&@)&-)&%&%-&)%&%-?^$-,%@£/&%#/*-%&&
0 жосдр
Пусть гипотенуза прямоугольного треугольника равна х см, тогда первый катет этого треугольника равен (х - 6) см, а второй катет равен (х - 6) + 3 = х - 3 см. По условию задачи известно, что площадь данного треугольника (площадь прямоугольного треугольника равна половине произведения его катетов) равна 1/2 * (х - 6)(х - 3) см^2 или 54 см^2. Составим уравнение и решим его.
1/2 * (х - 6)(х - 3) = 54;
(х - 6)(х - 3) = 54 * 2;
х^2 - 3х - 6х + 18 = 108;
х^2 - 9х + 18 - 108 = 0;
х^2 - 9х - 90 = 0;
D = b^2 - 4ac;
D = (-9)^2 - 4 * 1 * (-90) = 81 + 360 = 441; √D = 21;
x = (-b ± √D)/(2a);
x1 = (9 + 21)/2 = 30/2 = 15 (см);
х2 = (9 - 21)/2 = -12/2 = -6 - длина не может быть отрицательной.
ответ. 15 см.