Впрямоугольном треугольнике abc из вершины прямого угла b проведена медиана bm. при этом ∠bmc = 60°. найдите катет bc и гипотенузу ac, если высота mh треугольника bma равна 1 см.
Условие не полное. Не определена зависимость сторон от коэффициента подобия к. То есть какие стороны подобны(это не обязательно), а главное порядок отношения сторон относительно к.
ответ: 12p^4 - 11p^3 + 54p^2 + 10p - 25.
Объяснение:
1. Выполним умножение: каждое слагаемое первого трехчлена поочередно умножим на каждое слагаемое второго трехчлена, результаты сложим, учитывая знаки.
(p^2 − p + 5)(12p^2 + p − 5) = p^2 × 12p^2 + p^2 × p - p^2 × 5 - p × 12p^2 - p × p + p × 5 + 5 × 12p^2 + 5 × p - 5 × 5 = 12p^4 + p^3 - 5p^2 - 12p^3 - p^2 +5p + 60p^2 + 5p - 25 = 12p^4 - 11p^3 + 54p^2 + 10p - 25.
2. Приведем подобные слагаемые, поочередно сложив коэффициенты переменных одной степени.
Объяснение:
1) Kl=12; KM:ML= 3 : 1
KM=3ML
KM+ML=KL
3ML+ML=12
4ML=12
ML=3
KM=3ML=9
2) AB/ED=YX/LK; AB= 2 см, ED= 3 см и LK= 27 см
YX=LK·AB/ED=27·2/3=54/3=18
YX=18 см
3) ΔKBC∼ΔRTG; k= 18; P₁=8; S₁=9; P₂=?, S₂=?
Условие не полное. Не определена зависимость сторон от коэффициента подобия к. То есть какие стороны подобны(это не обязательно), а главное порядок отношения сторон относительно к.
Рассмотрю оба случая:
a) ΔKBC∼ΔRTG⇒P₂/P₁=k; S₂/S₁=k²
P₂=kP₁=8·18=144 см
S₂=k²S₁=8²·9=64·9=576 см²
б) ΔKBC∼ΔRTG⇒P₁/P₂=k; S₁/S₂=k²
P₂=P₁/=18/8=2,25 см
S₂=S₁/k²=9/8²=9/64 см²