1. a) |x - 1| + 2|x - 3| = 5 - x Если x < 1, то |x - 1| = 1 - x, |x - 3| = 3 - x 1 - x + 2(3 - x) = 5 - x 1 - x + 6 - 2x = 5 - x 1 + 6 - 5 = x + 2x - x 2x = 2; x = 1 - не подходит, потому что x < 1 Если x ∈ [1; 3), то |x - 1| = x - 1; |x - 3| = 3 - x x - 1 + 2(3 - x) = 5 - x x - 1 + 6 - 2x = 5 - x 5 - x = 5 - x Это верно при любом x ∈ [1; 3) Если x >= 3, то |x - 1| = x - 1; |x - 3| = x - 3 x - 1 + 2(x - 3) = 5 - x x - 1 + 2x - 6 = 5 - x 3x + x = 5 + 6 + 1 4x = 12 x = 3 ответ: x ∈ [1; 3]
1. q = -2.
2. 1;1/2;1/4 q = 1/2
1;3;9q = 3
2/3;1/2;3/8q = 3/4
√2; 1;√2/2q = 1/√2
3. заданная формула возможно неточно переписана или последовательность не геометрическая.
3*2n - 3 умножить на 2n или 3 возвести в степень 2n
4. q = 0,5
5. S = -0.25
6. b6 = 243.
7. 3-n,3-2n,3-3n,3-4n, 3n,3n+1,3n+2,3n+3 - єти последовательности не являются геометрическими прогрессиями
Объяснение:
1. Последовательность геометрическая т.к. а2 = а1 * q, а3 = а2 * q, где
q - одно и тоже число (знаменатель данной геометрической прогрессии)
q = а2 / а1 = -6 / 3 = -2.
4. Из формулы нахождения n-го члена геометрической прогрессии
q = а2 / а1 = 10/20 = 0,5.
5. q = а2 / а1 = -2/4 = -0,5
а5 = 4 * (-0,5)^4 = 0.25
a4 = 4 * (-0.5) ^3 = -0.5
6. b6 = b1 * q^5 = 243.
Если x < 1, то |x - 1| = 1 - x, |x - 3| = 3 - x
1 - x + 2(3 - x) = 5 - x
1 - x + 6 - 2x = 5 - x
1 + 6 - 5 = x + 2x - x
2x = 2; x = 1 - не подходит, потому что x < 1
Если x ∈ [1; 3), то |x - 1| = x - 1; |x - 3| = 3 - x
x - 1 + 2(3 - x) = 5 - x
x - 1 + 6 - 2x = 5 - x
5 - x = 5 - x
Это верно при любом x ∈ [1; 3)
Если x >= 3, то |x - 1| = x - 1; |x - 3| = x - 3
x - 1 + 2(x - 3) = 5 - x
x - 1 + 2x - 6 = 5 - x
3x + x = 5 + 6 + 1
4x = 12
x = 3
ответ: x ∈ [1; 3]
b) |x - 1| = x^3 - 3x^2 + x + 1
Если x < 1, то |x - 1| = 1 - x
1 - x = x^3 - 3x^2 + x + 1
0 = x^3 - 3x^2 + 2x
x(x - 1)(x - 2) = 0
x1 = 0 < 1 - подходит
x2 = 1; x3 = 2 > 1 - оба не подходят.
Если x >= 1, то |x - 1| = x - 1
x - 1 = x^3 - 3x^2 + x + 1
0 = x^3 - 3x^2 + 2
x^3 - x^2 - 2x^2 + 2x - 2x + 2 = 0
(x - 1)(x^2 -2x - 2) = 0
x1 = 1 - подходит.
x^2 - 2x - 2 = 0
D = 2^2 - 4*(-2) = 4 + 8 = 12 = (2√3)^2
x2 = (2 - 2√3)/2 = 1 - √3 < 1 - не подходит
x3 = (2 + 2√3)/2 = 1 + √2 > 1 - подходит
ответ: x1 = 0; x2 = 1; x3 = 1 + √2
2. (|x - 3|) / (|x - 2| - 1) >= 1
Если x < 2, то |x - 2| = 2 - x; |x - 3| = 3 - x
(3 - x) / (2 - x - 1) >= 1
(3 - x) / (1 - x) = (x - 3) / (x - 1) >= 1
(x - 3 - x + 1) / (x - 1) = (-2) / (x - 1) >= 0
x - 1 < 0; x < 1 - это решение
Если x ∈ [2; 3), то |x - 2| = x - 2; |x - 3| = 3 - x
(3 - x) / (x - 2 - 1) = (3 - x) / (x - 3) = -1 >= 1 - неверно
x ∈ ∅
Если x >= 3, то |x - 2| = x - 2; |x - 3| = x - 3
(x - 3) / (x - 2 - 1) = (x - 3) / (x - 3) = 1 - это верно при любом x ≠ 3
x > 3 - это решение.
ответ: x ∈ (-oo; 1) U (3; +oo)