Объяснение:Находим критические точки данной функции.
Для этого находим производную данной функции и находим точки, в которых эта производная обращается в 0.
у' = (-х^2 + 6х + 7)' = -2x + 6.
-2x + 6 = 0;
2x = 6;
x = 6 / 2 = 3.
Следовательно, точка х = 3 является критической точкой данной функции.
Находим значение второй производной данной функции в точке х = 3.
у'' = (-2x + 6)' = -2.
Так как вторая производная данной функции отрицательна во всех точках, то она отрицательна и в точке х = 3, следовательно, в этой точке функция у = -х^2 + 6х + 7 достигает своего локального максимума.
Следовательно, данная функция возрастает на промежутке (-∞; 3) и убывает на промежутке (3; +∞).
ответ: данная функция убывает на промежутке (3; +∞).
1) 25X^2 - 75X^2 - 17X + 6 = 0
25*(5)^2 - 75*25 - 85 + 6 = 625 - 1875 - 85 + 6 = 631 - 1960 = - 1329
ОТВЕТ: число 5 НЕ ЯВЛЯЕТСЯ КОРНЕМ ДАННОГО УРАВНЕНИЯ
2) 3*(2X-7) = 6X+1
6X - 21 = 6X + 1
6X - 6X = 22
0X = 22
ОТВЕТ: КОРНЕЙ НЕТ
4) (X-1)*(X+1) = 0
X1 = 1 X2 = - 1
(X+1)^2 = 2X+2
X^2 + 2X + 1 = 2X + 2
X^2 + 2X + 1 - 2X - 2 = 0
X^2 - 1 = 0
X^2 = 1 ---> X1 = V 1 = 1 (один корень)
ОТВЕТ: НЕ ЯВЛЯЕТСЯ
|X| - 1 = 0
|X| = 1
ОТВЕТ: ЯВЛЯЕТСЯ
X^2 = 1
ОТВЕТ: ЯВЛЯЕТСЯ
(X-1) = (X+1)
Корней нет : НЕ ЯВЛЯЕТСЯ
5) 2X+3A = 5X - 6B
5X - 2X = 3A + 6B
3X = 3*(A + 2B)
X = A + 2B
3) - 24X = - 5
AX = B
48X = 10
72X = 15
Объяснение:Находим критические точки данной функции.
Для этого находим производную данной функции и находим точки, в которых эта производная обращается в 0.
у' = (-х^2 + 6х + 7)' = -2x + 6.
-2x + 6 = 0;
2x = 6;
x = 6 / 2 = 3.
Следовательно, точка х = 3 является критической точкой данной функции.
Находим значение второй производной данной функции в точке х = 3.
у'' = (-2x + 6)' = -2.
Так как вторая производная данной функции отрицательна во всех точках, то она отрицательна и в точке х = 3, следовательно, в этой точке функция у = -х^2 + 6х + 7 достигает своего локального максимума.
Следовательно, данная функция возрастает на промежутке (-∞; 3) и убывает на промежутке (3; +∞).
ответ: данная функция убывает на промежутке (3; +∞).