Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
Не нужно раскрывать знак модуля. Строим поэтапно: 1)у = х + 3 - прямая 2)у = |x + 3|- отражаем часть графика, расположенную ниже оси Ох симметрично оси ох . 3)у= - |x + 3|- отражаем весь график y = |x + 3| симметрично относительно оси Ох. 4)у=1-|x+3| параллельный перенос графика у= - |x + 3| на 1 единицу вверх. 5)у=| 1 - | x + 3 || - часть графика у=1-|x+3| расположенную ниже оси Ох отражаем симметрично относительно оси ох вверх.
Раскрываем модуль Если х+3≥0, то |x+3|=x+3 Это и означает, что при х≥-3 строим график у=х+3 Если х+3 < 0, то |x+3|=-(x+3) Это означает, что при х < -3 строим график у=-х-3 ( отражаем симметрично оси Ох часть графика у=х+3 расположенную ниже оси Ох) Если 1-|x+3|≥0, то есть |x+3| ≤ 1 или -1 ≤ х+3 ≤ 1 или -4 ≤x ≤ -2 |1-|x+3||=1-|x+3| Это означает, что на [-4;-2] строим график у=1-|x+3|, который в свою очередь состоит из двух участков На [-4;-3) |x+3|=-x-3 поэтому у=1+х+3=х+4 На [-3;-2] |x+3|=x+3 у=1-х-3=-х-2
Если 1-|x+3|< 0, то есть опять два случая |x+3| > 1 или х+3>1 у=-1+|x+3| На (-∞;-4) |x+3|=-x-3, поэтому у=-1-х-3=-х-4 На (-2;+∞) |x+3|=x+3, поэтому у=-1+х+3=х+2 О т в е т. {-x-4, если х < - 4; {x+4, если -4≤х<-3; |1-|x+3||= {-х-2, если -3≤x≤-2; { x+2, если x>-2 cм. рис. 5
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
Строим поэтапно:
1)у = х + 3 - прямая
2)у = |x + 3|- отражаем часть графика, расположенную ниже оси Ох симметрично оси ох .
3)у= - |x + 3|- отражаем весь график y = |x + 3| симметрично относительно оси Ох.
4)у=1-|x+3| параллельный перенос графика у= - |x + 3| на 1 единицу вверх.
5)у=| 1 - | x + 3 || - часть графика у=1-|x+3| расположенную ниже оси Ох отражаем симметрично относительно оси ох вверх.
Раскрываем модуль
Если х+3≥0, то |x+3|=x+3
Это и означает, что при х≥-3 строим график у=х+3
Если х+3 < 0, то |x+3|=-(x+3)
Это означает, что при х < -3 строим график у=-х-3 ( отражаем симметрично оси Ох часть графика у=х+3 расположенную ниже оси Ох)
Если 1-|x+3|≥0, то есть |x+3| ≤ 1 или -1 ≤ х+3 ≤ 1 или -4 ≤x ≤ -2
|1-|x+3||=1-|x+3|
Это означает, что на [-4;-2] строим график у=1-|x+3|, который в свою очередь состоит из двух участков
На [-4;-3) |x+3|=-x-3 поэтому у=1+х+3=х+4
На [-3;-2] |x+3|=x+3 у=1-х-3=-х-2
Если 1-|x+3|< 0, то есть опять два случая
|x+3| > 1 или х+3>1
у=-1+|x+3|
На (-∞;-4) |x+3|=-x-3, поэтому у=-1-х-3=-х-4
На (-2;+∞) |x+3|=x+3, поэтому у=-1+х+3=х+2
О т в е т.
{-x-4, если х < - 4;
{x+4, если -4≤х<-3;
|1-|x+3||= {-х-2, если -3≤x≤-2;
{ x+2, если x>-2
cм. рис. 5